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Abstract (GM) 
 The University of Windsor Space & Aeronautics (WinSAT) team was challenged to design a 3U 

CubeSat which would have the capability of producing a space selfie, dubbed the “Selfie Sat”, which 

would be submitted to the Canadian Satellite Design Challenge (CSDC). Within the WinSAT team, 

there were several subdivisions, this report will showcase and highlight the work completed by the 

Attitude Determination and Control System (ADCS) subdivision over the 2020 Capstone term. 

 

 As the name states, the ADCS subdivision was tasked to provide determination and control of 

the CubeSat’s orbital attitude and position. Within the ADCS subdivision, the team split has two further 

divisions. The first team was tasked with Attitude Determination and the second team was tasked with 

Attitude Control. Attitude Determination encapsulates the two actuators, reaction wheels and 

magnetorquers, which were utilized in order to design the control system that would control the 

CubeSat’s orbital attitude. On the other hand, attitude control was tasked to collect input data from 

various sensors (gyroscope, magnetometer, and sun sensor) in order to output the CubeSat’s position, 

velocity, and orientation while in orbit.  

 

 To visualize this control and attitude determination, algorithms were developed via Python and 

MATLAB to acquire the required parameters for the two actuators and the sensor inputs for the design 

of the controller. Once these inputs and parameters were obtained, Systems Tool Kit (STK) was utilized 

to provide a visual aid to see the system in effect showcasing the orbit of the CubeSat and executing its 

BDOT algorithm for the Detumbling mode. Alongside, MATLAB scripts were generated in order to 

showcase Nadir pointing and Target Pointing via output graphs. 

 

 Within this report, the respective authors have been credited for the sections they have 

contributed to with their initials appearing within the header of the section. 
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1.0 Introduction (MA) 
 The WinSAT team is the University of Windsor’s engineering team that was competing in the 

Canadian Satellite Design Challenge (CSDC). The team was tasked with designing, building, testing and 

possibly launching a 3U CubeSat into low orbit space. A CubeSat is measured as a single unit “U” 

which is constructed of a cube that is 10x10x10 cm. The CSDC had required the WinSAT team to 

design a 3U CubeSat sized at 34.05x10x10 cm. Within the WinSAT team, there are various sub-teams 

that include: Structural, Electrical Power Systems (EPS), Thermal, Command and Data Handling 

(CDH), Payload, Radio Communications, Business, and Attitude Determination and Control Systems 

(ADCS). This capstone team has accomplished all the research, designs, and deliverables for the ADCS 

sub-division. The main design objective of the ADCS team was divided into two categories: Attitude 

Control and Attitude Determination. The attitude control focuses on developing a control system using 

actuators to control the satellite’s orbital attitude. Meanwhile, the attitude determination focuses on 

collecting data from the gyroscope, magnetometer, and sun sensor to output the satellite’s position, 

velocity and orientation in orbit. The team developed a functional controller that was able to operate in 

the following three stages: Detumbling, Nadir Pointing and Target Pointing. Within the detumbling 

phase, the B-Dot algorithm used in the MATLAB script will take the satellite’s initial uncontrolled 

angular velocity and will substantially decrease it to a near zero value. Within the Nadir pointing stage, 

the satellite will adjust the attitude from its original orientation to any other orientation to align the 

camera with Nadir (directly perpendicular to earth). Furthermore, the final stage will be the Target 

Pointing stage where the satellite will target its antenna to accurately point down towards the ground 

station for data transfer. The scope of the project included the design of the reaction wheels, the 

magnetorquers, the sun sensor and the controller. The first two team members worked on developing the 

final designs of the two actuators: reaction wheels and magnetorquers. However, due to global 

circumstances, they both finished designs of each actuator; however, they did not complete the physical 

models. As a result, they aided the other two members with the development of the sun sensor and the 

sliding mode controller. Two members had worked on constructing and simulating the sun sensor on 

both MATLAB and LTspice, while the other two members worked on designing and simulating the 

controller and the algorithms for each one of the three stages using MATLAB and STK. 
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2.0 Benchmarking (HG) 
 The sensor selection for the 3U CubeSat controls involved extensive literature review to 

determine commonly used sensors for other CubeSat missions. As the team read through the literature, 

the team would that the sensors use many other CubeSat missions included the gyroscope, 

magnetometer and a coarse sun sensor. The literature review consisted of an analysis of the different 

sensors and their application to determine their use in teams CubeSat. A commonly mentioned 

magnetometer in other CubeSat projects was the HMC5883L, a 3-axis sensor that should be used with 

the SparkFun breakout board. This sensor has been used in many CubeSat projects, resulting in an 

excellent flight heritage, low cost and optimal 3.3V operation [1]. Next the gyroscope, a commonly used 

sensor in other CubeSat missions, was the EVAL-ADXRS450Z-M, a simple breakout board with a 

digital output and a single axis sensing capability [1]. The review of many of the literature papers 

concluded with the team drawing up a summary table of the comparison of all the sensors considered 

and is shown in the figure below.  

 

 
Figure 1: Literature review of the most commonly used sensors for CubeSat missions 

 

 The sensor shown in red is one that was very commonly used in other CubeSat teams, but was 

not available on the current market and was therefore not considered. The sensors highlighted in orange 

are those that have been thoroughly researched and an analysis of each data sheet of the sensor has been 

carried out to determine the best fit for the specific CubeSat mission objective in terms of accuracy, ease 

of interface and availability. Next, the sun sensor, as described above, was developed using photodiodes 

and, therefore, a comprehensive review of the operating principles of photodiodes and how they can be 

incorporated into CubeSats was carried out. For example, existing teams have used a variety of 

configurations in terms of placement and number used. Although the use of photodiode as a sun sensor 

presents a higher difficulty from the point of view of implementation, for example, all literature reviews 
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describe the accuracy as relatively low compared to an off-the-shelf, space ready coarse sun sensor [2].  

However, these inaccuracies are the result of incorrect placement and the chosen photodiode. 

 

3.0 Design Criteria, Constraints, and Deliverables  

3.1 Constraints (GM) 

 Regarding the constraints of the ADCS subdivision, these constraints were provided by the 

CSDC [3]. These constraints include were divided into five sections including: co-ordinate system for 

selfie-cam, attitude extent for selfie-cam operations, attitude control, attitude determination fault-

tolerance, attitude control fault tolerance. The original plan for the ADCS subdivision was to maintain 

all set constraints in mind, though due to COVID-19 lockdown precautions, not all were considered or 

tested as the CSDC was no longer in consideration in relation to the deliverables. Though some points 

within the set-up constraints were maintained throughout the design phase and within the deliverables.  

A further breakdown of the specific design constraints are highlighted below in the following 

subsections. 

 

3.2 Reaction Wheels (MA) 

 The main design criteria that was used for the design of the reaction wheels was to meet the 

required slew time in order to rotate each wheel in a 90-degree rotation about each axis. For the 

WinSAT 3UCubeSat, the required slew time was required that it was under one minute. With this, the 

reaction wheel was able to produce enough torque to quickly rotate the satellite when required. For 

instance, when the satellite reaches the detumbling mode, there needs to be a quick torque produced in 

order to quickly set the satellite with a controllable speed when in orbit. In the research paper, [2] and 

[4]-[6], there existed various formulas to follow in order to design the reaction wheels, mainly selecting 

the required materials, the torques produced and the momentum storage that was required in order to 

move the wheels. The debate of designing the reaction wheels included whether to include a ring with a 

disk design or to just make it one solid wheel. From the research and tests, the ring with a disk design 

was the most optimal because it required less momentum due to less material as a result of the hollow 

ring. Furthermore, by using the material with less inertia for the design, the result was that there was also 

less momentum required, which in turn created more torque. In order to optimize and finalize the 

reaction wheel design, the type of motor to be selected was crucial. The type of motor that had the 

highest rpm was the most optimal because it produced enough torque at a quick time. In order to select 

the correct motor, the amount of momentum stored was needed to be calculated for each slew time. 
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Once calculated, the result was that we can obtain a slew time of one minute by selecting a motor that 

had an rpm of 5000 or greater. Once our foundational rpm criteria were selected, the motor was then 

selected. The final design of the reaction wheels along with the selection of the motor were achieved by 

constructing a Python code in order to determine which combination of the three was most optimal: 

material and sizing, required torques, and required momentum storages. Therefore, based on the code 

results, the constraints that limited the design was the type of material to be used. In other words, the 

material with the motor selected together did not produce a passing design with respect to the 

momentum storage that was required by the satellite. The final deliverable of the reaction wheels was 

the preliminary SOLIDWORKS design that included the four reaction wheels placed onto the PCB 

board with their corresponding dimensions and angles. Due to global circumstances, this was the final 

deliverable for the reaction wheel design as the entire project had moved to simulation based and no 

physical models were constructed. However, because this was the case, the team was able to select the 

optimal material because it was only simulation based on STK. By doing this, the team was able to 

achieve the required momentum storage that was needed by the satellite. 

 

3.3 Magnetorquers (GM) 

Regarding the CDSC, the magnetorquer design had the single constraint of requiring an auxiliary 

actuator in order to provide an alternative in the instance that one of the magnetorquers were to fail and 

be dysfunctional while in its orbit. This redundancy acts as a safety net to ensure that 3-axis control (roll, 

pitch, and yaw) will be maintained. For the magnetorquer design criteria, two metal core magnetorquers 

are positioned on the roll and pitch axis, and an air-core magnetorquer is placed on the yaw axis. In 

order to work, at any given moment, two of the three magnetorquers will be in effect. If the satellite is to 

reposition along any one of the three axes, the two not along the axis of rotation will be activated and 

produce a magnetic dipole moment which will interact with the Earth’s magnetic field at any given 

position in order to reorient the CubeSat. For example, if the satellite is to rotate along the yaw axis, the 

magnetorquers along the pitch and roll access will activate in order to produce the resultant rotation in 

the yaw axis. Beyond the specifications stated by the CDSC, the design of the magnetorquer was limited 

to fit within the limits of the PCB designed by the structural team. The preliminary designs can be seen 

in Figures 6-8. 

 

3.4 Sensors (HG)  

 As aforementioned, there are three sensors involved in the design of a 3UCubeSat, the 

magnetometer, the gyroscope and the sun sensor. The first two sensors were researched and bought off 
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the shelf in accordance with their flight heritage, accuracy and ease of interface. Flight heritage was an 

important aspect, as it provided the team with sensors that had completed the same mission as the 

WinSAT team. This indicates that the sensor can perform space missions and could be integrated with 

the CubeSat teams. As you know, the relative accuracy of the measurements with any sensor is very 

important in order to meet the specific mission objectives. For example, angular velocity, orientation and 

magnetic field strength measurements are very critical when determining the attitude determination of 

the satellite. Ultimately, the ease of interface was a criterion that the team focused on when selecting the 

gyroscope and magnetometer as the readings input from these sensors would go to the Command and 

Data Handling (CDH) team and would integrate the results and output them to the controller. Keeping in 

mind the design criteria mentioned above, the team selected the Adafruit Precision NXP 9-DOF 

Breakout Board-FXOS8700 + FXAS21002, which consists of a combination of a 3-axis magnetometer 

and a 3-axis gyroscope. This sensor provides a zero-rate level which is very important for orientation, as 

it represents the amount of angular velocity a gyroscope will report when the device is immobile [7]. 

This sensor provides a zero-rate level that is very important for orientation, as it represents the angular 

velocity of the gyroscope when the device is immobile. High zero-rate levels result in error in 

orientation determination and the distinction between zero-rate errors and angular velocity becomes non-

trivial [7]. Overall, the selection of the gyroscope and magnetometer was limited to meeting the 

competition requirements and price constraints. 
 

Next, the design of the sun sensor through the use of photodiodes involved various design 

selection criteria for design optimization, some of which included; the type of photodiode, the number of 

photodiodes per face and the orientation of the photodiode to produce the highest voltage readings for 

the microcontroller. The various types of photodiodes under consideration for the design included point 

and planar. The two types presented their own characteristics, such as point photodiode, which can be 

mounted on the CubeSat side, and soldered, but each photodiode produces four different outputs.  

Although this was a viable option, however, the four outputs per photodiode would result in 24 different 

outputs (1 photodiode per face) which were not appropriate and therefore the team decided to design the 

sun sensor using planar photodiodes.  In addition to the type of photodiode, the number of photodiodes 

per face was analyzed by the following criteria, either one or two. The complexity of integration 

increases as the number of photodiodes increases, as shown in the following figures, showing the 

different equations for calculations [8]. 
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Figure 2: Equations for photodiode configuration for one photodiode per face [8] 

 
Figure 3: Equations for photodiode configuration for two photodiodes per face [8] 

 

The logical approach used for selection resulted in the selection of a single photodiode (planar) 

per face as it reduced the complexity of the equations and also reduced the number of outputs to one per 

photodiode. As a result, the team purchased the SLCD-61N8 photodiode, which is a small silicone chip, 

with the bottom metallized and connected to the diode cathode. The upper side is the active area where 

the light-sensitive diode junction is located [9]. As the sun rays hit the light sensitive area, a current is 

generated and then sent to the microcontroller for readings, however, the initial current is too small to 

read and therefore the transimpedance amplifier (current to voltage converter) has been simulated to 

increase this minimum current to a voltage reading of approximately 5V. Therefore, by designing the 

sun sensor using planar photodiodes, the team was able to achieve the vector determination in order to 

use it as an input for an STK reading. The result outputted was a reading too low to be used and 

therefore the transimpedance amplifier was designed in order to obtain a voltage of 5V that can be used. 

The design of the sun sensor model in LTspice is made up of the photodiode configuration along with 

the amplifier circuit which consists of the op amp, resistor and capacitor. By utilizing LTspice, the team 

was able to conduct a result showing that the sun sensor can produce 5V which is required by the 

Electrical Power Systems (EPS) team. 

 

3.5 Controls (KN) 

 The ADCS controller developed was required to maintain and switch between three different 

control states. These are Detumbling, Nadir Pointing and Target Pointing. In order to achieve these 

tasks, an appropriate model of the satellite's attitude dynamics and kinematics needed to be developed. 
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Since these models are very well studied and well known, the design criteria for the satellites model 

were very general. The equations of motion along with the dynamic equations are similar from CubeSat 

to CubeSat. Although these mathematical equations are very similar for every CubeSat. The appropriate 

changes were made to model our satellite, winSAT1. These changes were mainly the following criteria: 

• The moment of inertia of the spacecraft in the body frame 

• The 3x3 reaction wheel distribution matrix of the spacecraft 

 When developing the satellites controller, many different considerations were taken. For the 

detumbling controller, the design criteria were to be able to reduce the satellites angular velocity from a 

high angular rate, to a near zero angular rate in around 1-1.5 orbits.  In order to achieve this, two 

different detumbling controllers were being compared for magnetic detumbling. The angular velocity 

feedback controller and the B-dot control law. The B-dot control law was then chosen due to its 

robustness and faster convergence rate to zero. These results were based on a report which implemented 

the two controls laws on a CubeSat with properties similar to winSAT1 and compared them [10]. An 

appropriate control gain needed to be determined in order to converge the angular rates to zero within 

the required time period. The initial control gain was determined using information gathered from 

previous research papers and then a trial and error method was used to find the gain required for the 

winSAT1 CubeSat to properly converge to zero. Likewise, there were multiples controllers studied to 

implement the Nadir Pointing and Target Pointing control stages. The main two were the Linear-

Quadratic-Regulator (LQR) feedback controller and the Sliding mode controller. The final decision was 

made based on the settling time criteria of each controller. Through rigorous research, it was found that 

for a Low-Earth-Orbit (LEO) satellite such as winSAT1, the sliding mode controller converged to the 

desired Euler angle orientation. Moreover, it was found that the sliding mode controller also performs 

better when one of the reaction wheels loses functionality. With the LQR feedback controller, once a 

reaction wheel fails, large oscillations are observed in the final desired Euler angle orientation output. 

[11]. The sliding mode controller is used for both the Nadir Pointing and Target Pointing control stages. 

In this work, the sliding mode controller implementation was provided to us by Dr. Rahimi who was 

helping us with the project. For attitude determination, various methods were studied in order to 

determine the best suited algorithm for our purposes. These were mainly the TRIAD, Q-method and 

QUEST. After careful research, it was determined that the Q-method and QUEST delivered the most 

accurate results. However, the TRIAD method was finally used to determine the orientation of our 

satellite due to its simple algorithm. This algorithm required data of two inertial sensors as input. These 

sensors were readily available to us thus we chose this method. 
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4.0 Design Methodology 

4.1 Reaction Wheels (MA) 

 As mentioned before, to design the reaction wheels, the required slew time had to be under one 

minute in order to produce enough torque to rotate in each respective axis. The design methodology for 

the reaction wheels commenced with two months of intensive research in order to comprehend what was 

required from the design. The main components that stood out from each research paper included the 

material and size of the reaction wheels, the required torque that was needed by the satellite, the required 

momentum storage that each wheel was able to hold, the disturbance torques, the motor selection, and 

the accuracy to which speed can be controlled. After the research was completed, the important formulas 

were noted and used to determine each parameter. These parameters included the total mass, the inertia 

of the disk, the inertia of the ring, the total inertia of the wheel, the total angular rotation time, the 

angular momentum of the reaction wheel, and final torque of the reaction wheel. By using a Python 

script in Appendix [A], this was all simply constructed and determined based on the initial input values 

that were given. From here, a comparison between the required parameters vs the actual parameters 

outputted was done in order to meet a certain safety factor. The required parameters of torque and 

momentum storage were given by the competition, and the actual parameters were determined based on 

research and student design. The team developed various scenarios with different combinations of the 

three parameters which included the sizing and material, the motor rpm, and the slew time. By adjusting 

every component, the team was able to test and observe each result and were to determine the most 

optimal design. However, the furthest that the team has achieved with the reaction wheel design was the 

preliminary SOLIDWORKS drawing that was developed by the structural team based on given 

parameters from the ADCS team. As a result, there was no actual physical model that was built simply 

due to the global circumstance which therefore resulted with only a simulation-based reaction wheel 

shown in the outputs of both MATLAB and STK. However, because the reaction wheel had gone fully 

simulation-based, there was the opportunity to explore even more optimal designs because the sizing, 

material and the rpm of the motor had limitless values that could be chosen. The team had chosen the 

most optimal design to use in STK simulations in order to produce the best sizing and material to use, 

and the most optimal motor rpm to produce the required torque and momentum storage. 
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Figure 4: Preliminary SOLIDWORKS design of reaction wheel placements onto the PCB board 

 

4.2 Magnetorquers (GM) 

 Before beginning any of the steps towards creating an acceptable design of the magnetorquers 

that would be on board the CubeSat, intensive literature review was done to further understand the 

purpose and role that the magnetorquers would serve. It was noted the goal of these actuators was to 

firstly aide in the detumbling of the CubeSat after it has been released from its launch vessel, once a 

stable speed is achieved for the CubeSat that we can control the secondary goal of the magnetorquers is 

set to begin. This secondary goal is to desaturate the work done by the reaction wheels. Seeing that 

magnetorquers are a very low power consuming actuator, this makes them an ideal solution to the 

problem. In terms of the major design criteria that was set out for the design of the magnetorquers, the 

magnetic dipole moment that would be generated from the two magnetorquer rods and the single air-

core magnetorquer. In order for the magnetorquers to provide the required magnetic dipole moment for 

3-axis control, a generated dipole moment of 0.2 Am2, where A is the current in amperes and m is 

metres, would provide sufficient results in order for the magnetorquers to provide the attitude control 

required by the CubeSat [12]. To help realize the optimal design that would provide acceptable results, a 

Python script was generated. This Python script would be utilized to optimize the design so that the size 

of the magnetorquers and air-core magnetorquers could be minimized, in terms of core material length 

and radius as well as wire length and radius, and the generated magnetic dipole moment would be 

maximized. This design choice would provide a small amount of space taken up on its PCB and allow 

space for other components that require more space in other subdivisions of the WinSAT CubeSat team. 

The Python script that was generated can be seen in Appendix [B] along with the graphs produced by 

the Python script in Appendix [C] and the script output is included below.  



 

 10 

 
Figure 5: Magnetorquer design Python script output 

 

 The design choice had been selected by filtering through the “Pass” cases that had been outputted 

by the code. Out of the “Pass” results, the decision was further refined to material accessibility, the 

easier the materials were to obtain the better the chances of the design specification to be selected. Prior 

to generating the Python code, the metal core material had already been selected to be Manganese-zinc 

ferrite (MnZn), from here the only other material left to decide was the gauge of the copper wire that 

would be wrapped around the ferrite core. Having access to 32 AWG (American Wire Gauge) since it 

was present on campus simplified the selection process further. From the figure above, the first design 

scenario was selected to proceed to a physical implementation. However, as mentioned prior, due to 

global circumstances, the physical models of the magnetorquers and air-core magnetorquer were to be 

left out as a completely simulated model of our design would be the only manageable deliverable. 

Though before the decision for global lockdown had been decided, with the assistance of the structural 

subdivision of the WinSAT CubeSat team, a preliminary digital design of the magnetorquer rods and 

air-core magnetorquer had been developed which can be observed below via SOLIDWORKS. 

 

 
Figure 6: Top view of magnetorquer PCB showing the two metal core magnetorquers 



 

 11 

 
Figure 7: Bottom view of magnetorquer PCB showing the air-core magnetorquer frame 

 

 
Figure 8: Side view of magnetorquer PCB 

 

4.3 Sensors (HG) 

 As aforementioned, the sun sensor was designed using photodiodes and simulated in the 

LTspice. The initial steps taken were to choose the correct photodiode for the CubeSat mission, the 

SLCD-61N8 (planar photodiode). As the sun rays hit the photodiode, a low current is generated which 

are not read by the microcontroller. The transimpedance amplifier was therefore designed using a 

photodiode configuration, an op-amp, a resistor and a capacitor. The initial configuration of the 

photodiode consisted of the following parameters: Reverse Voltage (VR), Capacitance (CD), Shunt 

Resistance (RSH) and Peak Current (IP). Reverse voltage and capacitance values were recorded from the 

data sheet and found to be 20V and 100pF respectively [13]. 

  

 However, the shunt resistance and peak current were calculated based on the following equation:  

𝑅!" =	𝑉#$	/𝐼#$ 

After calculation the RSH was calculated to be 2.95e-6W. Furthermore, the resistor and capacitor 

values were altered accordingly to produce an output voltage of 5V. The final resistor and capacitor 

values chosen were 1e-6W and 1.01e-7F respectively. After conducting the simulation, the voltage was 
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amplified to approximately 5V as required. Below are two diagrams, one that shows the initial circuitry 

and the other that shows the final simulation results.  

 

 
 

Figure 9: LTspice model for photodiode configuration and transimpedance amplifier  

 

 
Figure 10: Simulation result displaying amplification of signal to 5V 

 

 Sun sensor readings are important for determining the orientation of the CubeSats with respect to 

the body frame, and therefore a MATLAB code was used to determine the position of the vector, which 

was then input to the controller for Nadir Pointing. As stated above, the current (I) produced by the 

photodiode is correlated with the angle of the sun's rays being hit. The function to determine this 

correlation between the current angle of contact per CubeSat face is described by the sine functions 

shown below:  
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Figure 11: Current (I) equations for each face of the CubeSat [14] 

 

 
Figure 12: CubeSat Face Orientation [14] 

 

 In the equations shown above, there are two angles of contact between sun rays and photodiode, 

the Azimuth angle (q) and the Elevation angle (f). The Azimuth angle indicates the direction of the face, 

while the Elevation indicates how far you look in the sky. The combination of the two angles, Azimuth 

and Elevation, is therefore a measure to identify the position of a satellite flying overhead [15]. By 

measuring the current produced by the three photodiodes (maximum) that share the apex, the sun vector 

(single unit vector) was calculated using the following matrix: 

 

 
Figure 13: Sun vector in 3D based on the current measurements [14] 

 

 Elevation angles were changed from 0 to 3600 and current measurements per face matrix were 

simulated and plotted using MATLAB. You can see the MATLAB script in Appendix [D]. As the 

orientation of the satellite changes, the elevation angles per face increase and decrease with respect to 

time, and this correlation was seen in the MATLAB plot below. 
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Figure 14: Change in current per face after elevation angle iterations between 0 to 3600 

 

4.4 Controls (KN) 

The initial step taken to design a fully functional controller was to properly define the reference 

frames used in our satellite model. There are five major reference/coordinate frames included in 

winSAT1’s model. These coordinate frames are: 

 

ECI: Earth-Centered-Inertial Frame 

This is a non-rotational frame where the origin is found at the center of earth. The Z-axis of this 

frame is found in the same direction as earth rotational axis, the X-axis is found along the vernal equinox 

and the Y-axis completes the orthogonal frame.  

 

ECEF: Earth-Centered Fixed Frame 

This frame is very similar to the ECI frame. However, in this case, the X-axis is pointed towards 

the 0-degree latitude and 0-degree longitude on earth's surface. This frame is not inertial, as it rotates 

with the earth along the Z-axis. 

 

Orbit Frame 

This frame has its origin located at the center of mass (COM) of the winSAT1 satellite. Thus, 

making it a non-inertial frame. The Z-axis of this frame is always pointed towards the earth’s center. The 

Y-axis is in direction opposite to the orbit normal vector. This orientation is known as Nadir Pointing.  
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Figure 15: ECI, ECEF, and Orbit Frame [16] 

 

Body Frame 

The body frame has its center the same as the orbit frame. Although, this coordinate system 

rotates with the satellite. The X, Y and Z axes are chosen in a manner where they coincide with the 

satellite's principle inertia axes.   

 

Target Frame 

This frame is very similar to the orbit frame. However, the Z-axis of this frame is aligned with 

the target coordinate that is supplied to the satellite's controller. Target Pointing is defined within this 

reference frame.  

 
Figure 16: Target Frame [16] 

 

 Once the reference frames were properly defined. Rotation matrices which defined a vector in 

one frame to the other were developed in software. The second step was to develop the satellite’s 

dynamic and kinematic models. A satellite orbiting earth can be modelled as a rigid body with an N-

wheel reaction wheel cluster. Through review of [17], the following 3 dynamic equations which describe 

winSAT1 are: 

 
Where hb is the angular momentum vector of winSAT1 in the body reference frame given by: 
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Hw is the Nx1 vector of the axial angular momentum of the four reaction wheels. Wb is the 

angular velocity of winSAT1 in the body frame. This is provided by the gyroscope sensor. Td and Tw 

are the disturbance torques and the reaction wheel torques respectively. A is the 3xN reaction wheel 

distribution matrix, J is this moment of inertia of the spacecraft and reactions wheels given by: 

 
The satellites kinematic model will provide information between the angular speed and the rate 

of change of the attitude. In this work, the attitude will always be expressed in terms of quaternions and 

Euler angles. Through review of [17], the following 2 equations model the satellite kinematics: 

 
The kinematic and dynamic equations were then modelled in MATLAB software. Once the 

satellite model was developed. The third step was to develop the attitude determination model. This 

model allows for accurate determination of winSAT1’s orientation and velocity throughout its orbit. To 

determine the satellite velocity in the ECI and ECEF frames, a well-known algorithm named simplified 

perturbation model 4 or SGP4 was used. The input to this algorithm is a set of orbit parameters known 

as Keplerian elements along with a Two-Line Element or TLE file which was generated from our STK 

satellite model. To determine the satellites orientation/attitude, the TRIAD algorithm was used. This 

algorithm takes in two sensor data readings, mainly the sun sensor and the magnetometer data in the 

body frame from the on board IMU. The algorithm also takes the same type of data, however this time 

from an inertial frame stemming from mathematical models of those same sensors. Once this data is 

passed into the algorithm, the current orientation of our satellite is known. The fourth and final step was 

to develop the control models which allow winSAT1 to navigate through the previously mentioned 

control stages. The first controller developed was the detumbling controller. Here the B-Dot control law 

was developed in MATLAB and its output was piped into STK for simulation and visualization of the 

algorithm working on our satellite. Through review of [16], the following is the B-dot control law which 

was modified for computation in MATLAB:  

 
 Here, m is the magnetic moment generated by the magnetorquer once a current is passed through 

the coils. This magnetic moment is generated in a direction opposite to that of the earth's magnetic field 

vectors. In order to slow down the angular velocity of the satellite, a torque is generated by crossing the 

magnetic moment with the magnetic field of earth. This produces a torque that acts in the direction 

opposite to that of the spin of the satellite. The follow is the torque generated: 
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 It is assumed that for relatively high angular speeds, the rate of change of the earth's magnetic 

field can be defined as: 

 
 The output generated from STK for the detumbling controller is as follows:  

 

 
Figure 17: Detumbling algorithm converging the satellites angular velocity to near zero  

 

 In this figure, we can see that we have initialized the angular velocity of our satellite in the X, Y 

and Z axis respectively at specified rates. As time passes, the detumbling controller is producing a 

control torque continuously at every time step. With every time step, that output torque is then being 

passed back into STK and this torque is being applied to our satellite. It is important to note that the 

angular velocity being passed into the B-dot controller is being passed from STK on board gyro sensor 

to MATLAB. Thus, STK and MATLAB are working together to get the algorithm working. It is clear to 

see that as time passes, the angular velocity in every axis converge to zero. This confirms that the 

detumbling controller is working properly.  

 

 The Sliding mode controller was then developed in order to stabilize the attitude of our 

spacecraft. The following equations were obtained from the review of [17]. We must first define the 

linear sliding surface variable: 
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 The feedback control law chosen is as follows: 

 
 

 Where k, P1, P2, P3 and sigma are positive constants. This equation describes the control torque 

that must be generated by the reaction wheels for a given desired attitude. The sigma value is determined 

as follows: 

 
 Once we know the desired torque requirement, we must generate a corresponding voltage to the 

reaction wheel motors, the voltage needed is given by: 

 
 Where V is the output voltage, Ra is the coil resistance and Km is the motor torque constant 

matrix for each wheel. This control law was kindly provided to us by Dr. Rahimi to use for our 

simulations.  

 

 Below is the flow of MATLAB scripts which can be found in Appendix [F] – [K]. The software 

structure is as follows: 

• test_sgp4.m file was used to determine the velocity of the satellite at any point in its orbit. 

• Winsat_DetumbleTorque1.m file was used to integrate MATLAB with STK and run the 

detumbling algorithm.  

• TRIAD.m was used to run the TRIAD algorithm. 

• Tle.txt is the text file TLE used as input to test_sgp4.m 

•  magFieldModelECI.m was used as the inertial mathematical model for the earth's magnetic field 

and used as input to TRIAD.m 

• SunSensorModel.m was a was used as the inertial mathematical model for the sun vector 

direction and used as input to TRIAD.m  

• N_CSA_Script.m was used to initialize the initial parameters for Nadir Pointing and Target 

Pointing. 

• N_CSA_Model.m was used to develop the satellite dynamic and kinematic model. Along with 

the Sliding mode controller. 
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• N_CSA_Model.mdl was used as the Simulink model which was used to simulate the model in 

MATLAB.  

• N_CSA_Plotter.m was used to plot the outputs out N_CSA_model.m 

 

5.0 Physical Implementation/Simulation Model Validation 

5.1 Reaction Wheels (MA) 

 The simulation model was implemented using the STK software, MATLAB, and Python. This 

was done for every component of the ADCS including the reaction wheels, the magnetorquers, the sun 

sensor, and the controls algorithms. For the reaction wheels, the output of the Python script outputted 

what had passed or failed in terms of required torque and required momentum storage. In the STK 

software, the output of the voltage and wheel speeds shown for both Nadir and Target Pointing provide 

the results that the reaction wheels are producing enough torque at the required slew time to converge 

the quaternion error to zero in order to have both Nadir and Target Pointing stages. 

 

5.2 Magnetorquers (GM) 

 As mentioned prior within the report, the effects of COVID-19 caused lockdown regulations to 

be initiated worldwide. Due to the pandemic, the physical implementation to be done of the 

magnetorquers and the air-core magnetorquer were left undone, as all purchased and acquired materials 

were left on the campus of the University of Windsor, the magnetorquers were deemed as a non-

essential part of the overall design. The reaction wheels provided sufficient simulated results and were 

able to be integrated into the controller algorithm. For this reason, the team had made the decision to that 

the magnetorquers could be removed from the final design and the reaction wheels could provide the 

results required successfully. 

 

5.3 Sensors (HG) 

As it is known, due to the current global conditions, the physical implementation and testing of 

the sensors was not feasible and therefore simulation-based tests were carried out. As mentioned above, 

the two sensors, the magnetometer and the gyroscope were purchased off the shelf and therefore the 

ADCS team did not perform any sensor testing. However, the third sensor, the sun sensor, was tested 

and analysed using the LTspice program to design a transimpedance amplifier to convert the initial low 

photodiode current readings to a voltage reading of approximately 5V. These voltage readings for the 

design of the Sun Sensor are very important for determining the position of the CubeSat in relation to 
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the body frame. Using initial current readings, a MATLAB script was generated to determine the sun 

vector for positioning and input to the controller. The MATLAB script, as shown in the Appendix, 

shows variations in the current intensities of the CubeSat face as in the rotation. The maximum current 

(Imax) was set for simulation purposes by the team in which the elevation angles were changed from 0 

to 3600 and input into the formula shown in Figure 13. Once the simulation was run, the position of the 

sun vector was shown for the time series (set to 0.1 seconds). The corresponding results were the same 

as the direct values of the sun vector at that specific angle of elevation and time in the STK indicating 

that the correct MATLAB script was generated. 

 
5.4 Controls (KN)  

 The following were the outputs generated from the sliding mode control model.  

 

 
Figure 18: Euler angles converge to zero, thus pointing to Nadir 

 

 Here we can see a Euler Angle Vs Time plot for Nadir Pointing. The Euler angles are defined as 

Roll, Pitch and Yaw axes. It is seen that at time T= 0 seconds. We have a current attitude of 50 degrees 

Roll, 20 degrees Pitch and –30 degrees Yaw. It is important to mention that to achieve Nadir Pointing. 

The body frame of the satellite must be aligned with the orbit frame. This alignment is defined by a 0 

degree in Roll, Pitch and Yaw angles. In this plot, we can clearly see that we can converge to Nadir 

Pointing from any orientation is space with the sliding mode controller. The same is true for Target 

Pointing, the controller works the same, the only thing to change is the desired orientation.  
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Figure 19: Wheel speed output 

 

 In this figure, the wheel speeds of every reaction are plotted against time for the Nadir Pointing 

case with initial Roll, Pitch and Yaw angles previously mentioned. We can see that the wheel speeds 

converged to a speed which is always required to be maintained to maintain Nadir Pointing. If any 

outside disturbance changes these wheel speeds, the Nadir Pointing orientation will diverge.  

 

 
Figure 20: Quaternion error shows the change from the current quaternion to desired (converged at zero) quaternion  

 

 In this figure, the same initial conditions are the same as previously mentioned. Here we see the 

quaternion error plots. The quaternion error is defined as the difference between the reference 

quaternion/orientation and the current quaternion. It is clearly show that as time passes, this error 

converges to zero. Thus, supporting the result of Nadir Pointing.  
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6.0 Experimental Methods/Model Validation 

6.1 Controls (KN) 

 In order to validate the design of the controller, a visualization tool called STK was utilized. STK 

allowed the team to import a real-life scale model of the physical CubeSat that would have been 

developed if not for the global circumstances. With the imported model, the trajectory and 

uncontrollable motion of the CubeSat resembled that of a real-life scenario. In Figure 21, the CubeSat’s 

initial position is set at a given angular velocity of 7.2 degrees per second. This value was manually 

inputted into the system to provide a feasible starting point for the simulation. In Figure 22, the angular 

velocity has been greatly reduced to a value of 0.02 degrees per second. This reduction was achieved by 

importing the MATLAB script found in Appendix [F] which activates the control system’s BDOT 

algorithm in order to detumble the CubeSat to a near zero value so that the CubeSat can be successfully 

manipulated and reoriented to carry out its mission. 

 

 
Figure 21: Starting position in STK simulation  

 

 
Figure 22: End position in STK simulation after BDOT algorithm execution 
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 The time taken for the BDOT algorithm to achieve the near zero angular velocity can be seen in 

Figure 17, which showcases the 3 axes (Roll, Pitch, and Yaw) all converging to zero. 

 

7.0 Design Specifications and Evaluation Matrix 

7.1 Sensors (HG) 

 As discussed in sections above regarding the sensor design methodology and implementation, the 

sensors had proven to be designed as an accurate tool in recovering essential input data for the attitude 

control. The outputs of the three sensors provide the CubeSat with the ability to track its position, 

velocity and the orientation in its orbit. From the simulation constructed via LTspice, the photodiode 

transimpedance amplifier circuit was successful in producing a steady 5V. This voltage was key in being 

able to accurately pinpoint the position of the sun and aid with achieving Nadir Pointing. This is 

supported since the outputs achieved via the MATLAB script created for the sun vector determination 

matched the values that were achieved the successful creation of the STK simulation of the CubeSat. 

This supports the pointing accuracy achieved being less than or equal to 1.5 degrees which was 

highlighted in the constraints of the CSDC. 

 

7.2 Controls (KN) 

 Based on the graphs achieved for the various MATLAB scripts written for the control algorithm 

of the CubeSat, some observations of the design specification can be seen. In Figure 17 for the BDOT 

algorithm, on the basis of how long the system took to achieve convergence at zero of all 3 axes, it is 

determined that the algorithm will require approximately 68 minutes in order for the BDOT algorithm to 

have the 3 axes converge to zero and stabilize the CubeSat to a speed that we are able to manipulate so 

that we can achieve Nadir Pointing and Target Pointing. Nadir Pointing was achieved seeing that in 

Figure 18 showcasing the Euler angles all converging to a point of zero, (Roll, Pitch, Yaw) becomes (0, 

0, 0). In accordance to the CSDC, this meets the standards set out in order achieve acceptable Nadir 

Pointing.  

 

 As well as this, since successful detumbling was achieved via BDOT algorithm. Target Pointing 

can also be achieved, as the same requirements have been accomplished in order to produce acceptable 

Nadir Pointing, which include a low controllable speed successful reading from the various sensors.  
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8.0 Budget (MA) 
The initial budget was the $200 that was distributed to each capstone member, which totaled to 

$800 for the ADCS team. However, through fundraising and sponsorships, the WinSAT team was able 

to obtain $20,000 which increased the budget for the ADCS team to $2,000. Before the global situation 

occurred, the team was initial planning on purchasing the following components for each respective 

category; however, due to COVID-19, the team froze the purchases. For reaction wheels, the team was 

planning to purchase four motors and motor controllers. For magnetorquers, the team planned on 

purchasing the MnZn Ferrite cores. For sensors, the team had the initial plan on purchasing the 

photodiode planar chip and the NXP 9-DOF sensor. 

  
Table 1: Motor selection and prices 

Motor Price 
EC 20 flat Ø20 mm, brushless, 5 Watt, with Hall sensors $130.98 (x4) 

Faulhaber: Series 1509B (6V) $125.99 (x4) 
EC-max 16 Ø16 mm, brushless, 5 Watt, with Hall sensors $277.82 (x4) 

CHIHAI CHF-130SA-ABHL 6V 9500rpm Gear Motor Permanent Magnet 
DC Hall Coded Reduction Encoder Gear Motor 

$8.54 (x4) 

ECX SPEED 8 M Ø8 mm, brushless, with Hall sensors $318 (x4) 
  

Table 2: Motor controllers and prices 
Motor Controller Price 

ESCON Module 50/5, 4-Q Servocontroller for DC/EC motors, 5/15 A, 10 - 50 
VDC 

$226.59 (x4) 

Faulhaber SC 1801 P $199 (x4) 
Pololu Simple High-Power Motor Controller 18v15 (Fully Assembled) $46.95 (x4) 

Digilent Pmod DHB1 Dual H-bridge Motor Controller $23.78 (x4) 
 

Table 3: Magnetorquer material and price 
Magnetorquer Component Price 

MnZn Ferrite cores $1.455 (x3) 
 

Table 4: Sensors components and prices 
Sensor Component Price 

Photodiode, Planar Chip, 60º, 1.7uA, 930nm, Planar-1 $2.91(x10) 
Adafruit Precision NXP 9-DOF Breakout Board – FXOS8700 + FXAS21002 $14.95 

  
NOTE: Items Selected for Purchase 
  

As a result, if the team were to purchase the selected components, the totaled amount would be 

$1,452.505 which would be in the team’s updated budget. However, without the fundraisers and 

sponsorships, the team would be over budget and would have to select less expensive components. 
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9.0 Conclusions (GM) 
 Though the course of the Capstone project, much of the projected final product, results, and 

timeline had been offset by the unseen circumstances that COVID-19 has brought upon the world. As 

meeting in person to be able to work together and construct a physical model had been declared as a task 

that would no longer be possible, the ADCS subdivision, along with most of the other WinSAT 

subdivisions made the decision to move onwards with a completely simulated deliverable Capstone 

project. With this in mind, several aspects of the projects process of completion had changed all 

together. These included leaving behind the physical prototype of the ADCS system, actuators, and 

sensors. 

  

 Though with the changes brought onto the Capstone project, more ideal scenarios could be 

explored as with a completely simulated environment the limits of the real world no longer exist. 

However, real-world capabilities were kept in consideration throughout the construction of the 

completed sensor models as well as all aspects of the controller that dictates the CubeSat’s movement 

while in its orbit. This was integral to the completion of the ADCS system as the intent is to provide a 

working base for future students who wish to take on the WinSAT satellite as their own Capstone 

project in the coming years, as this 2020 Capstone year is the first year in which this project has been 

attempted. 

 

 When comparing the deliverables achieved with the expected performance, the deliverables 

provide sufficient results and meet the expectations of both the ADCS teams demands, as well as the 

expectation set out by the CSDC. For the sun sensor, the single photodiode per face model was 

simulated and programmed successfully with a constant output voltage of 5V, Figure 10, after the 

current sent from the photodiode passes through the designed transimpedance amplifier, which feeds the 

5V signal to the controller. Alongside this, the sun vector determination algorithm made in MATLAB 

had matching results with the output of STK which validated the pointing accuracy constraint set by the 

CSDC. 

 

 For the controller model, successful simulations and MATLAB scripts were constructed that 

prove the functionality of the control system in charge of dictating the CubeSat’s orientation and motion 

while in LEO. STK provided an excellent method in which visualization of the BDOT algorithm could 

be observed, Figures 17, 21, and 22, and proof of its ability to work was achieved. Nadir and Target 

Pointing were successfully achieved as well and can be seen in Figures 18-20 as the Euler angles and 
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quaternion error converge at zero for the 3 axes. In accordance with the CSDC and theory studied during 

literature, this work is confirmed.  

 

 Unfortunately, the two actuators (reaction wheels and magnetorquers), were left incomplete due 

to COVID-19, the design work that had been completed had proved successful in terms of the theoretical 

work. The design incorporated an auxiliary reaction wheel as well as an auxiliary magnetorquer, as per 

the demands of the CSDC constraints which would have been utilized in the instance that some form of 

failure were to appear in one of the reaction wheels or magnetorquers that were set to be utilized as 

primary actuators. 
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Appendices 
Appendix A 
import math as m 
import numpy as np 
from IPython import embed 
 
#Constants 
earthGravConst = 3.986e14 #Earth-Gravity Constant in m3/s2 
earthRadius = 6378.14 #Radius of Earth in Km. 
solarConst = 1367 #Solar Constant in [W/m2] 
magmomentEarth = 7.96e15 #Magnetic moment of earth in [Tesla/m3] 
rmsSINavg = 0.707 #Sinusoidal RMS average 
speedLightVacuum = 299792458.0 #speed of light in vacuum [m/s] 
safetyMargin = 1 
''' 
FireSat = satellite.Satellite({  
    "mass" : 215, 
    "inertiaZ" : 90, 
    "inertiaY" : 60, 
    "orbitAlt" : 700, 
    "slewRate" : 30, 
    "pointingAcc" : 0.1, 
    "surfaceArea" : 2*1.5, 
    "deltaCOGCOPsolar" : 0.3, 
    "coefReflectivity" : 0.6, 
    "angleIncidence" : 0, 
    "residualDipole" : 1, 
    "atmosDensityRho" : 1e-13, 
    "dragCoefCd" : 2.0, 
    "surfAreaAero" : 3, 
    "satVelocity" : 7504, 
    "deltaCOPCOGaero" : 0.2, 
    "marginFactor" : 0, 
    "slewTime" : 600, 
    "orbitalPeriod" : 1482, 
    "yawRollAccuracy" : 0.1  
}) 
''' 
WinSAT = { 
    "mass": 3.0, #Mass [kg] 
    "inertia_z": 0.014, #Moment of Inertia [Kg.m2] Ix = Iz 
    "inertia_y" : 0.0037, #Moment of Inertia [Kg.m2] 
    "orbital_altitude" : 408, #Alt [Km], Circular Orbit 
    "slew_rate" : 0, #0.1 [deg/s] 
    "pointingAccuracy" : 0.1, #[deg] 
    "targetingMaxAngle": 25, #[deg] 
    "surface_area" : 0.034, #Surface area cross section of [m^2, 0.340m by 0.1m] 
    "deltaCOMCOP": 0.051, #Center of mass to Center of pressure difference in [m] - 
based on SMAR -> Cubesat ratio 
    "coef_of_reflectivity": 0.6, #Coefficent of Reflectivity 
    "angle_of_incidence": 0, #Angle of incidence of the sun in [deg] 
    "magnetic_dipole": 1.0, #Spacecraft magnetic dipole [A.m2] 
    "atmospheric_density_rho": 1e-13, #Atmospheric density Rho [kg/m3] 
    "drag_coefficient": 2.0, #Drag Coefficient usually between 2 and 2.5 
    "surface_area_aero":0.034, #Surface Area in [m^2, 0.340m by 0.1m] 
    "deltaCOPCOGaero": 0.051, #Center of gravity to Center of aerodynamic pressure 
difference in [m] 
} 
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#REFER TO TABLE 11.9A IN SMAD FOR LIST OF EQUATIONS 
"""MAX GRAVITY TORQUE GENERATED BY GRAVITY GRADIENT DISTURBANCE""" 
def gravityGradient(sat): 
    orbitRadius = (earthRadius+sat['orbital_altitude'])*1000 
    baseFunc = ((3*earthGravConst)/(2*((orbitRadius)**3))) * (sat['inertia_z'] - 
sat['inertia_y']) 
    nadirMode = baseFunc*(np.sin(np.deg2rad(2*sat['pointingAccuracy']))) 
    targetingMode = baseFunc*(np.sin(np.deg2rad(2*sat['targetingMaxAngle']))) 
    return max(targetingMode,nadirMode) 
print ("Max torque generated by gravity gradient: " + str(gravityGradient(WinSAT)) + 
" N.m") 
"""MAX GRAVITY TORQUE GENERATED BY SOLAR RADIATION DISTURBANCE""" 
def solarRad(sat): 
    F = (solarConst/speedLightVacuum) * (sat['surface_area']) * 
(1+sat['coef_of_reflectivity']) * (np.cos(np.deg2rad(sat['angle_of_incidence']))) 
    return F*(sat['deltaCOMCOP']) 
print ("Max torque generate by solar radiation is: " + str(solarRad(WinSAT)) + " 
N.m") 
"""MAX GRAVITY TORQUE GENERATED BY MAGNETIC FIELD DISTURBANCE""" 
def magTorque(sat): 
    orbitRadius = (earthRadius+sat['orbital_altitude'])*1000 
    earthMagfield = 2*(magmomentEarth/(orbitRadius**3)) #For polar orbits-- half 
this for equatorial orbit 
    return earthMagfield*sat['magnetic_dipole'] #Worst case polar mag field in [N.m] 
print ("Max torque generated by magnetic field is: " + str(magTorque(WinSAT)) + " 
N.m") 
"""MAX GRAVITY TORQUE GENERATED BY AERODYNAMIC DISTURBANCE""" 
def aerodynamicDrag(sat): 
    orbitalVelocity = np.sqrt(398600.5/(6378.14+sat['orbital_altitude'])) 
    F = 
0.5*(sat['atmospheric_density_rho']*sat['drag_coefficient']*sat['surface_area_aero']
*(orbitalVelocity**2)) 
    return F * (sat['deltaCOMCOP']) 
print ("Max torque generated by aerodynamic pressure is: " + 
str(aerodynamicDrag(WinSAT)) + " N.m") 
""" SIZING ADCS HARDWARE """ 
print("-------- SIZING ADCS HARDWARE ---------") 
#List of disturbances 
disturbanceList = [gravityGradient(WinSAT), solarRad(WinSAT), magTorque(WinSAT), 
aerodynamicDrag(WinSAT)] 
greatestdisurbanceTd = max(disturbanceList) 
"""Calculates torque required to counter balance the effect of a disturbance""" 
''' 
def requiredcounterTorque(sat): 
    Trw = greatestdisurbanceTd*sat.margin_factor 
    return Trw 
print ("Counter torque required from reaction wheel due to greatest disturbance is: 
" + str(requiredcounterTorque(FireSat)) + " N.m") 
""" Calculates torque required to slew to a required angle """ 
def slewTorque(sat): 
    Tslew = (4*sat.slew_rate*(np.pi/180)*sat.inertia_z)/(sat.slew_time)**2 
    return Tslew 
print ("Counter torque required from reaction wheel to slew is: " + 
str(slewTorque(FireSat)) + " N.m") 
"""Estimates the wheel momentum stored in reaction wheel for one orbital period""" 
def momentumStorage(sat): 
    wheelmomentumH = (greatestdisurbanceTd*sat.orbital_period*rmsSINavg)/(4) 
    return wheelmomentumH 
print ("Wheel momentum stored in one orbit is: " + str(momentumStorage(FireSat)) + " 
N.m.s") 
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"""Angular momentum required for a specific Roll and Yaw with a given degree 
accuracy""" 
def requiredAngmomentum(sat): 
    angularmomentumreq = 
(greatestdisurbanceTd*sat.orbital_period)/(sat.yaw_roll_accuracy*(np.pi/180)) 
    return angularmomentumreq 
print ("Angular momentum required to Yaw or Roll with specific accuracy is: " + 
str(requiredAngmomentum(FireSat)) + " N.m.s") 
"""Magnetic torquer ability to counteract worst case disturbance during momentum 
dumping""" 
def magneticTorquer(sat): 
    orbitRadius = (earthRadius+sat.orbital_altitude)*1000 
    earthMagfield = 2*(magmomentEarth/(orbitRadius**3)) 
    magDiploleD = (greatestdisurbanceTd/earthMagfield) + 3 
    return magDiploleD 
print("the magnetic torquing ability of the magnetorquer is: "+ 
str(magneticTorquer(FireSat)) + " N.m.s") 
''' 
densityOfMaterial = 8940 #Density of Aluminum [kg/m^3] (661 T1) 
radiusOfDisk = 0.015   #Radius of the disk [m] 
heightOfDisk = 0.001        #Height of disk [m] 
radiusOfRing = 0.019    #Radius of ring [m] 
heightOfRing = 0.01      #Height of ring [m] 
slewRequirement_rad = np.deg2rad(90) #[rad] 
slewRequirement_time = 20.0 #[s] 
MOI_satellite = np.eye(3)*[0.0140011346, 0.0137275532, 0.00369381176] 
orbitalPeriod_ISS = 92.68*60. #[s] 
pointingRequirement_rad = np.deg2rad(1.0) #[rad] 
pyCfgAngle = np.deg2rad(67) #67 degrees in radians 
motorNominalSpeedTimeConst = (30.3e-3/0.63 * (4780/9350.)) #based on EC 20 flat 
datasheet, linearly relating time const to nom speed (mech time const = time to 63% 
of no load speed) 
singleRWSpeed = 4780*(2*np.pi/60) #rad/s 
 
massOfRing = densityOfMaterial*np.pi*(radiusOfRing**2 - 
radiusOfDisk**2)*heightOfRing #Mass of the ring [kg] 
massOfDisk = densityOfMaterial*np.pi*radiusOfDisk**2 * heightOfDisk #Mass of the 
disk [kg] 
motorAngularVelocity = [singleRWSpeed]*4#Maxon EC 20 flat, from RPM spec to rad/sec 
totalMassRW = massOfRing + massOfDisk #Total Mass of the Reaction Wheel 
inertiaOfRing = massOfRing*(radiusOfRing**2 + radiusOfDisk**2)/2 #Inertia of the 
Ring 
inertiaOfDisk = (massOfDisk*radiusOfDisk**2)/2 #Inertia of the Disk 
inertiaTotalRW = inertiaOfRing + inertiaOfDisk #Total inertia of the Reaction Wheel 
matrixAw = np.array([[np.cos(pyCfgAngle), 0, -np.cos(pyCfgAngle), 0], 
    [0, np.cos(pyCfgAngle), 0, -np.cos(pyCfgAngle)],  
    [np.sin(pyCfgAngle), np.sin(pyCfgAngle), np.sin(pyCfgAngle), 
np.sin(pyCfgAngle)]]) 
#Maximum Torque and Momentum of the Reaction Wheel 
#wheelMomentum = matrixAw*(inertiaTotalRW * motorAngularVelocity); 
wheelTorques = [inertiaTotalRW*(singleRWSpeed/motorNominalSpeedTimeConst)]*4; 
wheelMomentums = [inertiaTotalRW*singleRWSpeed]*4 
#Maximum Torque and Momentum in the Satellite Frame 
#Max X & Y occur at [+,+,-,-] and max Z at [+,+,+,+] 
wheelTorquesMax_SatelliteFrame = [wheelTorques[1]*np.cos(pyCfgAngle), 
wheelTorques[2]*np.cos(pyCfgAngle), 4*wheelTorques[1]*np.cos(pyCfgAngle)] 
wheelMomentumMax_SatelliteFrame = [wheelMomentums[1]*np.cos(pyCfgAngle), 
wheelMomentums[2]*np.cos(pyCfgAngle), 4*wheelMomentums[1]*np.cos(pyCfgAngle)] 
#Minimum Wheel Torque in the Satellite Frame 
wheelTorqueMin = min(wheelTorquesMax_SatelliteFrame) 
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#Maximum Disturbance Torque 
disturbanceTorque = greatestdisurbanceTd 
#Satellite's Moment of Inertia 
#Required Slew Torque and Momentum Storage 
requiredSlewTorque = 
np.array(4*slewRequirement_rad*MOI_satellite/(slewRequirement_time**2)) 
#minSlewTorque = np.amax((requiredSlewTorque)) 
arr = np.array (requiredSlewTorque) 
requiredSlewTorqueX = arr[0,0] 
requiredSlewTorqueY = arr[1,1] 
requiredSlewTorqueZ = arr[2,2] 
requiredSlewTorqueList = [requiredSlewTorqueX, requiredSlewTorqueY, 
requiredSlewTorqueZ] 
minSlewTorque = np.amin(requiredSlewTorqueList) 
 
minwheelMomentumMax_SatelliteFrame = np.amin(wheelMomentumMax_SatelliteFrame) 
 
 
requiredMomentumStorage = (orbitalPeriod_ISS/4)*(disturbanceTorque*0.707) 
#wheelTorques_SatelliteFrame = matrixAw*wheelTorques; 
#Comparison of the Required and Found (Torque and Momentum) 
 
print 'The Greatest Disturbance Torque is', greatestdisurbanceTd 
print 'The Torque of Each RW is:', wheelTorques 
 
print 'The Maximum Momentum of the Wheel in the Satellite Frame is:', 
wheelMomentumMax_SatelliteFrame 
print 'The Momentum of Each Wheel is:', wheelMomentums 
 
print 'The Required Momentum Storage is:', requiredMomentumStorage 
print 'The Required Slew Torque is:', requiredSlewTorque 
 
print 'The Maximum Torque of the Wheel in the Satellite Frame is:', wheelTorqueMin 
print 'The Minimum Value of all Maxmimum Momentums in the Satellite Frame is', 
minwheelMomentumMax_SatelliteFrame 
print 'The Minimum Value of all Required Slew Torques is:', minSlewTorque 
 
#embed() 
 
print 'Wheel Disturbance Torque: {} - {} > {}'.format('Pass' if wheelTorqueMin > 
safetyMargin*greatestdisurbanceTd else 'Fail' ,wheelTorqueMin, 
safetyMargin*greatestdisurbanceTd) 
print 'Slew Torque: {} - {} > {}'.format('Pass' if wheelTorqueMin > 
safetyMargin*minSlewTorque else 'Fail' , wheelTorqueMin, safetyMargin*minSlewTorque) 
print 'Momentum Storage: {} - {} > {}'.format('Pass' if 
minwheelMomentumMax_SatelliteFrame > safetyMargin*requiredMomentumStorage else 

'Fail' ,minwheelMomentumMax_SatelliteFrame, safetyMargin*requiredMomentumStorage) 
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Appendix B 
from numpy import * 
import matplotlib.pyplot as plt 
from IPython import embed 
from scipy.optimize import minimize 
 
#based on: http://www.raumfahrt.fh-aachen.de/compass-
1/download/Diploma_Thesis_Ali_Aydinlioglu.pdf 
 
#https://en.wikibooks.org/wiki/Engineering_Tables/Standard_Wire_Gauge 
V_bus = 5 #V 
u_0 = 1.25663706e-6 #m kg s-2 A-2 - permeability of free space 
 
guageCSA = { 
20: 0.5176e-6, 
21: 0.4105e-6, 
22: 0.3255e-6, 
23: 0.2582e-6, 
24: 0.2047e-6, 
25: 0.1624e-6, 
26: 0.1288e-6, 
27: 0.1021e-6, 
28: 0.0810e-6, 
29: 0.0642e-6, 
30: 0.0509e-6, 
31: 0.0404e-6, 
32: 0.0320e-6, 
33: 0.0254e-6, 
34: 0.0201e-6, 
35: 0.0160e-6, 
36: 0.0127e-6, 
37: 0.0100e-6, 
38: 0.0080e-6, 
39: 0.0063e-6, 
40: 0.0050e-6, 
} 
 
materialDict = { 
 'Copper': { 
  'density': [8.92e3,'kg/m^3'], 
  'permiability': [1.256629e-6,'H/m'], 
  'resistivity': [1.55e-8,'Ohm*m'], 
  'u_r':  [1.256629e-6/u_0, 'u/u0'] 
 }, 
 #'Al': { 
 # 'density': [2.7e-3,'g/mm^3'], 
 # 'resistivity': [2.5e-5,'Ohm*mm'], 
 # 'tempCoeffResistivity': [3.90e-3,'1/K'], 
 #}, 
 'MnZnFerrite': { 
  'density': [4.837e3, 'kg/m^3'], 
  'u_r': [2300,'u/u0'], 
 } 
} 
''' 
xMap: 
0 - radius of the core 
1 - N number of turns of wire 
''' 
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#guage, m^2 
 
allResults = [] 
for guage, a_w in guageCSA.items(): 
 def demagnetizingFactor(params): 
  rc, lc, N = params 
  try: 
   4*(log(lc/rc)-1.)/((lc/rc)**2 - 4*log(lc/rc)) 
  except Exception as e: 
   print e 
   embed() 
  return 4*(log(lc/rc)-1.)/((lc/rc)**2 - 4*log(lc/rc)) 
 
 def magDipoleMoment(params, mat_core=materialDict['MnZnFerrite'], 
mat_wire=materialDict['Copper']): 
  rc, lc, N = params 
  M = (pi*(rc**2)*N*V_bus/wireResistance(params))*(1+((mat_core['u_r'][0]-
1)/(1.+(mat_core['u_r'][0]-1)*demagnetizingFactor(params)))) 
  return M 
 
 def objective(params): 
  return -magDipoleMoment(params) 
 
 def powerConstraint(params, power=0.2, mat_core=materialDict['MnZnFerrite'], 
mat_wire=materialDict['Copper'], get=False): 
  rc, lc, N = params 
  result = V_bus**2/wireResistance(params) 
  if get: 
   return result 
  return power - result 
 
 def numTurnsConstraint(params, numTurns=10000): 
  rc, lc, N = params 
  return numTurns - N 
 
 def dimensionConstraint(params): 
  rc, lc, N = params 
  return lc - rc 
  
 def wireResistance(params, mat_core=materialDict['MnZnFerrite'], 
mat_wire=materialDict['Copper']): 
  rc, lc, N = params 
  #R_m - resistance of wire material - Ohm*m 
  #a_w - guage of wire - m^2 
  return 2*pi*rc*N*mat_wire['resistivity'][0]/a_w 
 
 def massConstraint(params, mass=0.08, mat_core=materialDict['MnZnFerrite'], 
mat_wire=materialDict['Copper'], get=False): 
  rc, lc, N = params 
  l_wire = 2*pi*rc*N 
  result = (mat_core['density'][0]*pi*(rc**2)*lc + 
a_w*l_wire*mat_wire['density'][0]) 
  if get: 
   return result 
  return mass - result 
 
 cons = [{'type': 'ineq', 'fun': massConstraint}, 
  {'type': 'ineq', 'fun': powerConstraint}, 
  {'type': 'ineq', 'fun': numTurnsConstraint}, 
  {'type': 'ineq', 'fun': dimensionConstraint}] 
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 #rc, lc, N 
 x0 = [4.75e-3, 70e-3, 5000] 
 
 bnds = ((1e-3, 10e-3), (40e-3, 70e-3), (1000, 50000)) 
 
 sol = minimize(objective, x0, method='SLSQP', constraints=cons, bounds=bnds) 
 
 xOpt = sol.x 
 paramOpt = -sol.fun 
 status = 'Pass' if sol.status else 'Fail' 
 print 'Status: {} - G: {} AWG, M: {} Am^2, Mass: {} kg, Power: {} W, r_c: {} 
mm, l_c: {} mm, N: {}'.format(status, guage, paramOpt,massConstraint(xOpt, 
get=True), powerConstraint(xOpt, get=True), xOpt[0]*1e3, xOpt[1]*1e3, xOpt[2]) 
 allResults.append([guage, massConstraint(xOpt, get=True), 
powerConstraint(xOpt, get=True), paramOpt]+list(xOpt)) 
allResults = array(allResults).T 
 
from mpl_toolkits.mplot3d import Axes3D 
zPlots = { 
 'Magnetic Dipole Moment [Am^2]': allResults[3], 
 'Mass [g]': allResults[1], 
 'Power [W]': allResults[2], 
} 
#gauge, massConstr, powerConstr, magMoment, r_c, l_c, N 
for zTitle, zs in zPlots.items(): 
 fig = plt.figure() 
 ax = fig.add_subplot(111, projection='3d') 
 xs = allResults[4]*1e3 
 ys = allResults[5]*1e3 
 values = allResults[0] 
 ax.set_xlabel('Radius [mm]') 
 ax.set_ylabel('Length [mm]') 
 ax.set_zlabel(zTitle) 
 ax.set_xlim3d(0,max(xs)*1.1) 
 ax.set_ylim3d(0,max(ys)*1.1) 
 p = ax.scatter3D(xs, ys, zs=zs, c=values, cmap='hot') 
  
 fig.colorbar(p, ax=ax) 
plt.show() 
plt.pause(.001) 
embed() 
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Appendix C 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 36 

Appendix D 
clc; 
% Body Frame Definitions: 
%{ 
    X+ : Nadir pointing 
    Z+ : To Top of Sat: Antenna Deployment System 
    Y+ : Orthonormal 
%} 
%To_From_csys 
%csys_name 
  
%Elevation Angle = theta (u) Defined at the height of the observer  
%Azimuth Angle = Phi (v)  Defiend as the angle between the x-y axis  
% Theta = u phi = v 
  
dT = 0.01; % Defined as the change in time  
omega = 20; %deg/s % Change in the angle (degrees) per second  
dTheta = omega*dT; % Change in angle theta with respect to omega and time   
u = 0:dTheta:360;  % The angle of rotation (from 0-360 degrees)  
%v = 0:dt:90; 
v = zeros(size(u)); % Phi angle (angles of elevation) 
I_max = 100; % Setting the maximum current (The team set this value just for 
simualtion purposes) 
%I_Theta = I_max*sind(u); 
I_measured = I_max*[sind(v).*cosd(u); cosd(v).*cosd(u); sind(u); -
(sind(v).*cosd(u)); -(cosd(v).*cosd(u)); -(sind(u))]; % Matrix for each face of the 
cubesat 
I_measured = max(I_measured,0) % Defining I measured matrix based on the I_measured 
formula above and setting all negative values to zero  
plot(transp(I_measured)); % Plot the I_measured  
grid on; 
  
% R_Positive_X=[1 0 0;0 cosd(u) -sind(u);0 sind(u) cosd(u);] 
% R_Negative_X=[1 0 0;0 cosd(u) sind(u);0 sind(u) cosd(u);] 
% R_Positive_Y=[cosd(u) 0 sind(u);0 1 0; -sind(u) 0 cosd(u);] 
% R_Negative_Y=[cosd(u) 0 -sind(u);0 1 0; sind(u) 0 cosd(u);] 
% R_Positive_Z=[cosd(u) -sind(u) 0;sind(u) cosd(u) 0; 0 0 1;] 
% R_Negative_Z=[cosd(u) sind(u) 0;-sind(u) cosd(u) 0; 0 0 1;] 
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Appendix E 
Sample result of vector (I_measured for the first 39 iterations) 
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Appendix F 
Winsat_DetumbleTorque1.m 
function [output] = Winsat_DetumbleTorque1(input) 
  
switch input.method 
     
    case 'compute' 
        computeData = input.methodData; 
         
        % Output Control Torque in form expected by Attitude Simulator 
        MagField = computeData.MagFieldIGRF(4:6); 
        Angualr_velocity = computeData.Angvelocity;                    
        output.Torque = -1.1 * (eye(3)-MagField/norm(MagField)*MagField') 
*Angualr_velocity; 
         
    case 'register' 
         
        param1 = {  'ArgumentName','time',... 
            'Name','Epoch',... 
            'ArgumentType','Input'}; 
         
        param2 = {  'ArgumentName','MagFieldIGRF',... 
            'Type','Vector',... 
            'Name','MagField(IGRF)',... 
            'RefType', 'Attitude',...  
            'Derivative', 'Yes',... 
            'ArgumentType','Input'}; 
         
        param3 = {  'ArgumentName','Angvelocity',... 
            'Type','Vector',... 
            'Name','AngVelocity',... 
            'RefType', 'Attitude',... 
            'Derivative', 'NO',... 
            'ArgumentType','Input'}; 
                    
        param4 = {  'ArgumentName','Torque',... 
            'Type','Parameter',... 
            'Name','Torque',... 
            'BasicType','Vector',... 
            'ArgumentType','Output'}; 
                 
        output = {param1, param2, param3, param4};  
         
    otherwise 
        output = []; 
End 
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Appendix G 
Test_sgp4.m 
clc 
clear 
format long g 
  
global const 
SAT_Const 
  
ge = 398600.8; % Earth gravitational constant 
TWOPI = 2*pi; 
MINUTES_PER_DAY = 1440.; 
MINUTES_PER_DAY_SQUARED = (MINUTES_PER_DAY * MINUTES_PER_DAY); 
MINUTES_PER_DAY_CUBED = (MINUTES_PER_DAY * MINUTES_PER_DAY_SQUARED); 
  
% TLE file name  
fname = 'tle.txt'; 
  
% Open the TLE file and read TLE elements 
fid = fopen(fname, 'r'); 
  
% 19-32    04236.56031392    Element Set Epoch (UTC) 
% 3-7    25544    Satellite Catalog Number 
% 9-16    51.6335    Orbit Inclination (degrees) 
% 18-25    344.7760    Right Ascension of Ascending Node (degrees) 
% 27-33    0007976    Eccentricity (decimal point assumed) 
% 35-42    126.2523    Argument of Perigee (degrees) 
% 44-51    325.9359    Mean Anomaly (degrees) 
% 53-63    15.70406856    Mean Motion (revolutions/day) 
% 64-68    32890    Revolution Number at Epoch 
  
while (1) 
    % read first line 
    tline = fgetl(fid); 
    if ~ischar(tline) 
        break 
    end 
    Cnum = tline(3:7);                          % Catalog Number (NORAD) 
    SC   = tline(8);                            % Security Classification 
    ID   = tline(10:17);                        % Identification Number 
    year = str2num(tline(19:20));               % Year 
    doy  = str2num(tline(21:32));               % Day of year 
    epoch = str2num(tline(19:32));              % Epoch 
    TD1   = str2num(tline(34:43));              % first time derivative 
    TD2   = str2num(tline(45:50));              % 2nd Time Derivative 
    ExTD2 = tline(51:52);                       % Exponent of 2nd Time Derivative 
    BStar = str2num(tline(54:59));              % Bstar/drag Term 
    ExBStar = str2num(tline(60:61));            % Exponent of Bstar/drag Term 
    BStar = BStar*1e-5*10^ExBStar; 
    Etype = tline(63);                          % Ephemeris Type 
    Enum  = str2num(tline(65:end));             % Element Number 
     
    % read second line 
    tline = fgetl(fid); 
    if ~ischar(tline) 
        break 
    end 
    i = str2num(tline(9:16));                   % Orbit Inclination (degrees) 
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    raan = str2num(tline(18:25));               % Right Ascension of Ascending Node 
(degrees) 
    e = str2num(strcat('0.',tline(27:33)));     % Eccentricity 
    omega = str2num(tline(35:42));              % Argument of Perigee (degrees) 
    M = str2num(tline(44:51));                  % Mean Anomaly (degrees) 
    no = str2num(tline(53:63));                 % Mean Motion 
    a = ( ge/(no*2*pi/86400)^2 )^(1/3);         % semi major axis (m) 
    rNo = str2num(tline(64:68));                % Revolution Number at Epoch 
end 
fclose(fid); 
  
satdata.epoch = epoch; 
satdata.norad_number = Cnum; 
satdata.bulletin_number = ID; 
satdata.classification = SC; % almost always 'U' 
satdata.revolution_number = rNo; 
satdata.ephemeris_type = Etype; 
satdata.xmo = M * (pi/180); 
satdata.xnodeo = raan * (pi/180); 
satdata.omegao = omega * (pi/180); 
satdata.xincl = i * (pi/180); 
satdata.eo = e; 
satdata.xno = no * TWOPI / MINUTES_PER_DAY; 
satdata.xndt2o = TD1 * 1e-8 * TWOPI / MINUTES_PER_DAY_SQUARED; 
satdata.xndd6o = TD2 * TWOPI / MINUTES_PER_DAY_CUBED; 
satdata.bstar = BStar; 
  
tsince = 1440; % amount of time in which you are going to propagate satellite's 
state vector forward (+) or backward (-) [minutes]  
  
[rteme, vteme] = sgp4(tsince, satdata); 
  
% read Earth orientation parameters 
fid = fopen('eop19620101.txt','r'); 
%  ---------------------------------------------------------------------------------
------------------- 
% |  Date    MJD      x         y       UT1-UTC      LOD       dPsi    dEpsilon     
dX        dY    DAT 
% |(0h UTC)           "         "          s          s          "        "          
"         "     s  
%  ---------------------------------------------------------------------------------
------------------- 
eopdata = fscanf(fid,'%i %d %d %i %f %f %f %f %f %f %f %f %i',[13 inf]); 
fclose(fid); 
  
if (year < 57) 
    year = year + 2000; 
else 
    year = year + 1900; 
end 
  
[mon,day,hr,minute,sec] = days2mdh(year,doy); 
MJD_Epoch = Mjday(year,mon,day,hr,minute,sec); 
[mon,day,hr,minute,sec] = days2mdh(year,doy+tsince/1440); 
MJD_UTC = Mjday(year,mon,day,hr,minute,sec); 
  
% Earth Orientation Parameters 
[x_pole,y_pole,UT1_UTC,LOD,dpsi,deps,dx_pole,dy_pole,TAI_UTC] = 
IERS(eopdata,MJD_UTC,'l'); 
[UT1_TAI,UTC_GPS,UT1_GPS,TT_UTC,GPS_UTC] = timediff(UT1_UTC,TAI_UTC); 
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MJD_UT1 = MJD_UTC + UT1_UTC/86400; 
MJD_TT  = MJD_UTC + TT_UTC/86400; 
T = (MJD_TT-const.MJD_J2000)/36525; 
[positionECI, velocityECI] = teme2eci(rteme,vteme,T,dpsi,deps) 
[recef,vecef] = teme2ecef(rteme,vteme,T,MJD_UT1+2400000.5,LOD,x_pole,y_pole) 
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Appendix H 
TRIAD.m 
function A_traid = 
TRIAD(sunSensorVector_BF,magFieldStrength_BF,sunSensorVector_ECI,magFieldStrength_EC
I) 
% Abr = TRIAD(fb, mb, fn, mn) 
% Function implements  TRIAD algorithm using measurements 
% from three-component accelerometer with orthogonal axes and vector 
% magnetometer 
% 
%   Input arguments: 
%   sunSensorVector_BF - Sun vector in body frame [3x1] 
%   magFieldStrength  - Magnetic field vector in body frame [3x1] 
%   sunSensorVector_ECI  - Sun vector in ECI frame [3x1] 
%   magFieldStrength_ECI  - Magetic field vector in ECI frame [3x1] 
% 
%   Output arguments: 
%   Abr - estimated Direction Cosines Matrix (DCM) 
traid1 = [sunSensorVector_BF/norm(sunSensorVector_BF),... 
    
cross(sunSensorVector_BF,magFieldStrength_BF)/norm(cross(sunSensorVector_BF,magField
Strength_BF))]; 
traid1 = [traid1, cross(traid1(:,1),traid1(:,2))]; 
  
traid2 = [sunSensorVector_ECI/norm(sunSensorVector_ECI),... 
    
cross(sunSensorVector_ECI,magFieldStrength_ECI)/norm(cross(sunSensorVector_ECI,magFi
eldStrength_ECI))]; 
traid2 = [traid2, cross(traid2(:,1),traid2(:,2))]; 
  
A_traid = traid1*traid2'; 
End 
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Appenix I 
SunSensorModelECI.m 
function [sunVectorX, sunVectorY, sunVectorZ] = sunSensorModelECI(tleFile) 
  
%Open text file 
fileID = fopen(tleFile,'r'); 
tline = fgetl(fileID); 
  
%We want to extract line 19-33 from out ISS_TLE file to find Julian Date 
year  = tline(19:21); 
month = tline(21:23);  
  
julianDate = (367*year) - ((7*year) + (month + 9)/12)/4 + (275*month)/9 +1721013.5 + 
hour/24 + minute/1440 + second/86400; 
  
%Given the julian date - compute unit vector direction to the sun 
  
Tut1 = (julianDate - 2451545)/36525; 
meanLongitudeOfSun = 280.4606184 + 36000.7705361*Tut1; 
meanAnomalyOfSun = 357.5277233 + 35999.05034*Tut1; 
eclipticLongitudeOfsun = meanLongitudeOfSun + 
1.914666471*sin(meanAnomalyOfSun)+0.918994643*sin(2*meanAnomalyOfSun); 
  
elipsoid = 23.439291 - 0.0130042 * Tut1; 
  
%calcualtes the sun vector components 
sunVectorX = cos(eclipticLongitudeOfsun); 
sunVectorY = cos(elipsoid)*sin(eclipticLongitudeOfsun); 
sunVectorZ = sin(elipsoid)*sin(eclipticLongitudeOfsun); 
end 
MagFieldModelECI.m 
function [magFieldStrengthX,magFieldStrengthY,magFieldStrengthZ] = 
magFieldModelECI(positionECI) 
     
    coelevationAngle = 196.54;           %[degrees] 
    eastLongitudeDipoleAngle = 108.43;   %[degrees] 
     
    unitDipoleDirection  = 
[sin(coelevationAngle)*cos(eastLongitudeDipoleAngle),sin(coelevationAngle)*sin(eastL
ongitudeDipoleAngle),cos(coelevationAngle)]; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 44 

Appendix J     
N_CSA_Script 
clear; clc; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          ORBITAL PARAMETERS                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mue    = 398600; 
Re     = 6378; 
Rs     = 500; 
Rp     = Re+Rs; 
n      = sqrt(mue/(Rp^3)); 
thtd2  = n^2; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           MOMENT OF INERTIA                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Js     = diag([0.002928049; 0.014683125; 0.001477392]);               % WinSAT1% 
Jw     = diag([1e-5, 1e-5, 1e-5, 1e-5]);            % Reaction Wheels     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       REACTION WHEEL PARAMETERS                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Ra     = 0.6;                           % Coil Resistance                  
Km1    = 0.0082;                        % Motor Constant - Wheel 1         
Km2    = 0.0080;                        % Motor Constant - Wheel 2         
Km3    = 0.0071;                        % Motor Constant - Wheel 3         
Km4    = 0.0080;                        % Motor Constant - Wheel 4         
dp_x   =  1.3;                          % Positive Deadzone - Wheel 1      
dn_x   = -1.1;                          % Negative Deadzone - Wheel 1      
dn_y   = -1.15;                         % Positive Deadzone - Wheel 2      
dp_y   =  1.2;                          % Negative Deadzone - Wheel 2      
dp_z   =  1.2;                          % Positive Deadzone - Wheel 3      
dn_z   = -1.1;                          % Negative Deadzone - Wheel 3      
dp_o   =  1.1;                          % Positive Deadzone - Wheel 4     
dn_o   = -1.15;                         % Negative Deadzone - Wheel 4      
V_max  =  4.50;                         % Wheel - Maximum Voltage          
wsd    = 0.01;                          % Lowest speed                    
alpha  = 45*pi/180;                     % In-plane angle                   
beta   = 45*pi/180;                     % Out-of-plane angle               
                                                                           
CASE   = 1;     % 1 = Orthogonal, 2 = Standard four Wheels, 3 = Pyramid    
                                                                           
Ap     = [Ra; Km1; Km2; Km3; Km4; dp_x; dn_x; dp_y; dn_y; dp_z; dn_z; ...  
          dp_o; dn_o; V_max; wsd; alpha; beta; CASE];                      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                             CONTROL GAINS                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
p1    = 1;                                                                
p2    = 1;                                                              
p3    = 1;                                                               
b1    = 300;                                                            
b2    = 0.001;                                                             
k1    = 0.06;                                                             
bh0   = 0.0;                                                               
lambda = 1;                                                             
delta  = 1e-3;    
alpha = 0.00001;        %added for 3-axis magntic control 
beta = 0.1;             %added for 3-axis magntic control 
                                                                           
Cg   = [p1; p2; p3; b1; b2; k1; delta; lambda; thtd2; alpha; beta];                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           INITIAL CONDITIONS                            % 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
roll0 = 50*pi/180; 
pitch0 = 20*pi/180;  
yaw0 = -30*pi/180; 
q0 = angle2quat(yaw0,pitch0,roll0); 
  
%sat position in orbit frame 
%now instead we will use, 
%ang velocity in body frame XYZ 
%magnteic field val in body XYZ 
%sun vect values in body XYZ 
%time since epoch  
%3U cubesat TLE file in ISS orbit 
%OUTPUT - current quat in orbit frame. nadir = [1,0,0,0] 
%OUTPUT - current quaternion attitude 
  
  
q10 = q0(2); %0.4;                                                     
q20 = q0(3); %0.4;                                                         
q30 = q0(4); %0.4;                                                                
q40 = q0(1); %sqrt(1 - q10^2 - q20^2 - q30^2);                                    
  
w10 = 1.000;   %initial value for magnetic control (deg/s)                                                           
w20 = -0.500;  %initial value for magnetic control (deg/s) 
w30 = 0.300;   %initial value for magnetic control (deg/s)                                                         
                                                                           
X0  = [ q10; q20; q30; q40; w10; w20; w30; 0; 0; 0; 0 ];                   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           DESIRED CONDITIONS                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
roll0d = 0*pi/180; 
pitch0d = 0*pi/180; 
yaw0d = 0*pi/180; 
q0d = angle2quat(yaw0d,pitch0d,roll0d); 
  
qd   =[q0d(2); q0d(3); q0d(4)]; %[q1d; q2d; q3d]; 
q4d  = q0d(1); %sqrt(1 - (qd'*qd)); 
qD   = [qd; q4d]; 
wD   = [0; 0; 0]; 
  
sim('N_CSA_Model.mdl',[0 30]); 
save 'results.mat' 
N_CSA_Plotter(); 
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Appendix K 
N_CSA_Model.m 
function [State_dot, Q_er, w_sat, Voltage, Tau_ap, w_I, Euler, w_speed, sigma_dot] 
... 
           = N_sim_model(States, qD, wD, Jw, Js, Cg, Ap,t,sigma) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       REACTION WHEEL PARAMETERS                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Ra     = Ap(1);                         % Coil Resistance                 % 
Km1    = Ap(2);                         % Motor Constant - Wheel 1        % 
Km2    = Ap(3);                         % Motor Constant - Wheel 2        % 
Km3    = Ap(4);                         % Motor Constant - Wheel 3        % 
Km4    = Ap(5);                         % Motor Constant - Wheel 4        % 
dp_x   = Ap(6);                         % Positive Deadzone - Wheel 1     % 
dn_x   = Ap(7);                         % Negative Deadzone - Wheel 1     % 
dp_y   = Ap(8);                         % Positive Deadzone - Wheel 2     % 
dn_y   = Ap(9);                         % Negative Deadzone - Wheel 2     % 
dp_z   = Ap(10);                        % Positive Deadzone - Wheel 3     % 
dn_z   = Ap(11);                        % Negative Deadzone - Wheel 3     % 
dp_o   = Ap(12);                        % Positive Deadzone - Wheel 4     % 
dn_o   = Ap(13);                        % Negative Deadzone - Wheel 4     % 
V_max  = Ap(14);                        % Wheel - Maximum Voltage         % 
wsd    = Ap(15);                                                          % 
Km_mat = diag([Km1, Km2, Km3, Km4]);                                      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                     REACTION WHEEL CONFIGURATION                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
alpha  = Ap(16);                             % In-plane angle             % 
beta   = Ap(17);                             % Out-of-plane angle         % 
cbca   = cos(beta)*cos(alpha);                                            % 
cbsa   = cos(beta)*sin(alpha);                                            % 
sb     = sin(beta);                                                       % 
CASE   = Ap(18);                             % 3-configurations           % 
                                                                          % 
if CASE == 1                                                              % 
    R_dist = [ 1 0 0 0  ;                    % Three orthogonal wheels    % 
               0 1 0 0  ;                                                 % 
               0 0 1 0 ];                                                 % 
elseif CASE == 2                                                          % 
    R_dist = [ 1 0 0 -cbca  ;                % Standard four wheels       % 
               0 1 0 -cbsa  ;                                             % 
               0 0 1  sb   ];                                             % 
elseif CASE == 3                                                          % 
    R_dist = [ -cbca  -cbca   cbca  cbca  ;  % Pyramid configuration      % 
                cbsa  -cbsa  -cbsa  cbsa  ;                               % 
                sb     sb     sb    sb   ];                               % 
else                                                                      % 
    R_dist = [ 1 0 0 0  ;                    % Three orthogonal wheels    % 
               0 1 0 0  ;                                                 % 
               0 0 1 0 ];                                                 % 
end                                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                            CONTROL GAINS                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
p1     = Cg(1);                                                           % 
p2     = Cg(2);                                                           % 
p3     = Cg(3);                                                           %  
b1     = Cg(4);                                                           %    
b2     = Cg(5);                                                           % 
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k1     = Cg(6);                                                           % 
delta  = Cg(7);                                                           % 
lambda = Cg(8);                                                           % 
thtd2  = Cg(9);                                                           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           INTEGRATED STATES                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
q1 = States(1);                                                           % 
q2 = States(2);                                                           % 
q3 = States(3);                                                           % 
q4 = States(4);                                                           % 
w  = States(5:7);                                                         % 
q  = [q1; q2; q3];                                                        % 
w_speed = States(8:11);                                                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       ESSENTIAL TERMS AND MATRICES                      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
q_cross = [  0  -q3   q2  ;                                               % 
            q3    0  -q1  ;                                               % 
           -q2   q1    0 ];                                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  ROTATION MATRIX - BODY TO ORBITAL                      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
R_bo  = (q4^2 - q'*q)*eye(3,3) + 2*(q*q') - 2*q4*q_cross;                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                ANGULAR VELOCITY - ORBITAL TO INERTIAL                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
w_oI = R_bo*[0; -sqrt(thtd2); 0];                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 ANGULAR VELOCITY - BODY TO INERTIAL                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
w_I = w + w_oI;                                                           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                        QUATERNION KINEMATICS                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
q_dot  =  0.5*(q_cross + q4*eye(3,3))*w;                                  % 
q4_dot = -0.5*transpose(q)*w;                                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                             DESIRED ATTITUDE                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
qd   = [qD(1); qD(2); qD(3)];                                             % 
q4d  = qD(4);                                                             % 
                                                                          % 
q_e  = q4d*q - q4*qd + cross(q,qd);                                       % 
q4_e = q4d*q4 + qd'*q;                                                    % 
                                                                          % 
qe_c = [  0       -q_e(3)   q_e(2)  ;                                     % 
          q_e(3)   0       -q_e(1)  ;                                     % 
         -q_e(2)   q_e(1)   0      ];                                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                      CONVERSION TO EULER ANGLES                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
roll  = (180/pi)*atan2(R_bo(2,3),R_bo(3,3));                              % 
pitch = -(180/pi)*asin(R_bo(1,3));                                        % 
yaw   = (180/pi)*atan2(R_bo(1,2),R_bo(1,1));                              % 
                                                                          % 
Euler = [roll; pitch; yaw];                                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  ROTATION MATRIX - BODY TO DESIRED                      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Re_bi = (q4_e^2 - q_e'*q_e)*eye(3,3) + 2*(q_e*q_e') - 2*q4_e*qe_c;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                        ANGULAR VELOCITY ERROR                           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
w_e   = w - Re_bi*wD;                                                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                            SLIDING PLANE                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Sp = w_e + sign(q4_e)*lambda*q_e;                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          CONTROL ALGORITHM                              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eta    = p1*norm(w) + p2*norm(q) + p3;                                    % 
rho    = sigma*eta;                                                       % 
K_t    = 1/(norm(Sp) + delta);                                            % 
R_Pin  = R_dist'*inv(R_dist*R_dist');                                     % 
U_des  = (k1 + (rho + eta)*K_t)*R_Pin*Sp;                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                             ADAPTIVE LAW                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sigma_dot = -b1*sigma + b2*eta*((norm(Sp)^2)/(norm(Sp) + delta));        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                             WHEEL VOLTAGE                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Voltage = Ra*inv(Km_mat)*U_des + Km_mat*w_speed;                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%               VOLTAGE DEADZONE LIMITATION (Lower limits)                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Voltage(1) <= dp_x)&& (Voltage(1)>0) && (abs(w_speed(1)) < wsd)       % 
    Voltage(1) = dp_x;                                                    % 
elseif(Voltage(1) >= dn_x) && (Voltage(1)<0) && (abs(w_speed(1)) < wsd)   % 
    Voltage(1) = dn_x;                                                    % 
end                                                                       % 
if (Voltage(2) <= dp_y) && (Voltage(2)>0) && (abs(w_speed(2)) < wsd)      % 
    Voltage(2) = dp_y;                                                    % 
elseif(Voltage(2) >= dn_y) && (Voltage(2)<0) && (abs(w_speed(2)) < wsd)   % 
    Voltage(2) = dn_y;                                                    % 
end                                                                       % 
if (Voltage(3) <= dp_z) && (Voltage(3)>0) && (abs(w_speed(3)) < wsd)      % 
    Voltage(3) = dp_z;                                                    % 
elseif(Voltage(3) >= dn_z) && (Voltage(3)<0) && (abs(w_speed(3)) < wsd)   % 
    Voltage(3) = dn_z;                                                    % 
end                                                                       % 
if (Voltage(4) <= dp_o) && (Voltage(4)>0) && (abs(w_speed(4)) < wsd)      % 
    Voltage(4) = dp_o;                                                    % 
elseif(Voltage(4) >= dn_o) && (Voltage(4)<0) && (abs(w_speed(4)) < wsd)   % 
    Voltage(4) = dn_o;                                                    % 
end                                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                VOLTAGE SATURATION LIMITS (Upper bound)                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (abs(Voltage(1)) > V_max) && (Voltage(1) < 0)                          % 
    Voltage(1) = -V_max;                                                  % 
elseif (abs(Voltage(1)) > V_max) && (Voltage(1) > 0)                      % 
    Voltage(1) = V_max;                                                   % 
end                                                                       % 
if (abs(Voltage(2)) > V_max) && (Voltage(2) < 0)                          % 
    Voltage(2) = -V_max;                                                  % 
elseif (abs(Voltage(2)) > V_max) && (Voltage(2) > 0)                      % 
    Voltage(2) = V_max;                                                   % 
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end                                                                       % 
if (abs(Voltage(3)) > V_max) && (Voltage(3) < 0)                          % 
    Voltage(3) = -V_max;                                                  % 
elseif (abs(Voltage(3)) > V_max) && (Voltage(3) > 0)                      % 
    Voltage(3) = V_max;                                                   % 
end                                                                       % 
if (abs(Voltage(4)) > V_max) && (Voltage(4) < 0)                          % 
    Voltage(4) = -V_max;                                                  % 
elseif (abs(Voltage(4)) > V_max) && (Voltage(4) > 0)                      % 
    Voltage(4) = V_max;                                                   % 
end                                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       GRAVITY GRADIENT TORQUE                           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
GGT  = 3*thtd2*cross(R_bo(:,3),(Js*R_bo(:,3)));                           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           APPLIED TORQUE                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Tau_ap = U_des; %(1/Ra)*Km_mat*(Voltage - Km_mat*w_speed);   % Applied Torque     % 
Jmat   = Js - R_dist*Jw*R_dist';               % Combined Inertia Matrix  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                         SPACECRAFT DYNAMICS                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
w_0 = sqrt(thtd2)*1000; 
EDT = [ 0*4e-6 + 2e-6 * sin(w_0*t); 
        0*6e-6 + 3e-6 * sin(w_0*t); 
        0*3e-6 + 3e-6 * sin(w_0*t)]; 
w_dot = cross(w,w_oI) + inv(Jmat)*(-cross(w_I,(Js*w_I+R_dist*Jw*w_speed))... 
                                   + GGT + 1*EDT - R_dist*Tau_ap);          % 
Ow_dot = inv(Jw)*Tau_ap - R_dist'*(w_dot - cross(w,w_oI));                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                        OUTPUT FOR INTEGRATION                           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
State_dot = [q_dot; q4_dot; w_dot; Ow_dot];                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Q_er  = [q_e; q4_e]; 
w_sat = w; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
N_CSA_Plotter.m 
function [] = N_CSA_Plotter() 
clc; 
close all; 
load 'results.mat' 
  
line_w=2; 
fig_max_row = 3; 
fig_max_col = 3; 
  
h1 = figure('NumberTitle', 'off', 'Name', 'Quaternion Error'); 
%placefigure(h1,[fig_max_row fig_max_col 1 1]); 
plot(quat_er,'linewidth',line_w); 
title('Quaternion Error'); 
xlabel('time'); 
ylabel('Error'); 
legend('q0','q1','q2','q3','location','best'); 
  
h2 = figure('NumberTitle', 'off', 'Name', 'Angular Velocity Error'); 
%placefigure(h2,[fig_max_row fig_max_col 1 2]); 
plot(angular_er,'linewidth',line_w); 
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title('Angular Velocity Error'); 
xlabel('time'); 
ylabel('Error'); 
legend('\omega_1','\omega_2','\omega_3','location','best'); 
  
h3 = figure('NumberTitle', 'off', 'Name', 'Input Voltage'); 
%placefigure(h3,[fig_max_row fig_max_col 1 3]); 
plot(input_v,'linewidth',line_w); 
title('Input Voltage'); 
xlabel('time'); 
ylabel('Voltage'); 
legend('wheel_1','wheel_2','wheel_3','wheel_4','location','best'); 
  
h4 = figure('NumberTitle', 'off', 'Name', 'Applied Torque'); 
%placefigure(h4,[fig_max_row fig_max_col 2 1]); 
plot(applied_torque,'linewidth',line_w); 
title('Applied Torque'); 
xlabel('time'); 
ylabel('Torque'); 
legend('wheel_1','wheel_2','wheel_3','wheel_4','location','best'); 
  
h5 = figure('NumberTitle', 'off', 'Name', 'Angular Velocity'); 
%placefigure(h5,[fig_max_row fig_max_col 2 2]); 
plot(inertial_angular_v,'linewidth',line_w); 
title('Interial Angular Velocity'); 
xlabel('time'); 
ylabel('Angular Velocity'); 
legend('\omega_1','\omega_2','\omega_3','location','best'); 
  
h6 = figure('NumberTitle', 'off', 'Name', 'Euler Angles'); 
%placefigure(h6,[fig_max_row fig_max_col 2 3]); 
plot(euler_angles,'linewidth',line_w); 
title('Euler Angles'); 
xlabel('time'); 
ylabel('Angle'); 
legend('Roll','Pitch','Yaw','location','best'); 
  
h7 = figure('NumberTitle', 'off', 'Name', 'Wheel Speed'); 
%placefigure(h7,[fig_max_row fig_max_col 3 1]); 
plot(wheel_speed,'linewidth',line_w); 
title('Wheel Speed'); 
xlabel('time'); 
ylabel('Speed'); 
legend('wheel_1','wheel_2','wheel_3','wheel_4','location','best'); 
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Appendix L 
Orange represents time before COVID-19 
Blue represents time during COVID-19 
Green represents the testing phase  
 

Table 5: Gantt chart for project timeline of completion 
 Jan 

202
0 

Feb 
2020 

March 
2020 

April 
2020 

May 
2020 

June 
2020 

July 
2020 

Aug 
2020 

Comprehensive Research                 
Component Documentation/Selection                 
Design Phase                 
Sun Sensor & Controller Prototyping                 
Simulation of Sun Sensor & Controller                
 
 
 
 
 
 
  
 
 


