
   
 

   
 

 

 

 

WINSAT COMMAND, DATA, AND RADIO FREQUENCY 

 

 

Submitted in partial fulfillment of the 

requirements for the course 

 

 

ELEC-4000: Capstone Design Project 

 

 

 

 

Department of Electrical and Computer Engineering 

University of Windsor 

 

 

August 2020 



   
 

   
 

 

 

 

 

 

WINSAT COMMAND, DATA, AND RADIO FREQUENCY 

 

 

By 

 

 

Grebe, Jon 104371501 

Simard, Pierre 104589669 

Al-Khazraji, Adam 104245871 

Frim, Justin 104109690 

 

 

Faculty Advisor: Dr. Rashidzadeh 

 

Department of Electrical and Computer Engineering 

University of Windsor 

 

August 2020 



   
 

   
 

 

 

 

 

WINSAT COMMAND, DATA, AND RADIO FREQUENCY 

 

 

 

 

“No action by any design team member contravened the provisions of the Code of Ethics and 

we hereby reaffirm that the work presented in this report is solely the effort of the team 

members and that any work of others that was used during the execution of the design project 

or is included in the report has been suitably acknowledged through the standard practice of 

citing references and stating appropriate acknowledgments”. 

The presence of the author's signatures on the signature page means that they are affirming 

this statement. 

Grebe, Jon 104371501 
 

August 7, 2020 

Simard, Pierre 104589669 
 

August 7, 2020 

Al-Khazraji, Adam 104245871 
 

August 7, 2020 

Frim, Justin 
104109690  

 
August 7, 2020 

 



   
 

   
 

Abstract 

This report includes an overview of the development, design, simulation, and implementation 

of the Payload, CDH, and RF subsystems onboard the WinSAT CubeSat satellite. The 

WinSAT team’s objective is to build a 3U Earth observation satellite for the CSDC, and this 

report covers the design of three of the onboard submodules. 

For the Payload subsystem, the team selected the hardware, including computer, camera 

modules, and cameras lenses, and developed the software to facilitate both satellite mission 

objectives of a primary single-point access and secondary area or global coverage. The team 

working in AGI STK simulation software to perform access and coverage analysis and to verify 

camera parameters. A web application was also built for public access to satellite imagery.  

For the CDH subsystem, the team selected the hardware and software architecture for the 

main onboard satellite computer. The flight software was developed to provide communication 

between and integration with all other satellite subsystems. The software manages onboard 

data, commands, and telemetry. The team also developed lower-level hardware interfaces as 

well as the ADCS system software. 

Regarding the RF subsystem, the team simulated antenna characteristics and worked on 

developing a communication model based on the given results. Physical satellite antenna and 

deployment mechanisms were designed to receive and transmit all data. The RF electrical 

components were selected and configured to process signals for given frequencies.  

The team was able to implement the software design into a “Flat-Sat” test setup. This provides 

all of the connections and interfaces between all satellite subsystems without the components 

being housed in the final satellite structure. This allows for testing of the flight software as well 

as integration testing. This implementation demonstrated that the design met all of the CSDC 

competition requirements. 

 

 

 



   
 

   
 

Table of Contents 

Abstract ........................................................................................................................................... 4 

Table of Contents ............................................................................................................................. 5 

1 Introduction .............................................................................................................................. 9 

1.1 Payload ....................................................................................................................................... 11 

1.2 CDH ............................................................................................................................................. 11 

1.3 Radio ........................................................................................................................................... 11 

2 Benchmarking......................................................................................................................... 13 

2.1 Software Frameworks .................................................................................................................. 13 

2.2 Hardware Protection .................................................................................................................... 14 

2.3 Radio Frequency .......................................................................................................................... 15 

3 Design Criteria, Constraints, and Deliverables.......................................................................... 17 

3.1 Orbit ............................................................................................................................................ 17 

3.2 Payload ....................................................................................................................................... 17 

3.3 Command and Data ..................................................................................................................... 18 

3.4 Radio ........................................................................................................................................... 18 

3.5 Deliverables ................................................................................................................................. 19 

4 Design Methodology ............................................................................................................... 20 

4.1 Payload ....................................................................................................................................... 20 

4.1.1 Payload and Secondary Payload Sensor ............................................................................................................. 21 

4.1.2 Primary Payload Lens Selection.......................................................................................................................... 22 

4.1.3 Secondary Payload Lens Selection ..................................................................................................................... 23 

4.1.4 Payload Operation .............................................................................................................................................. 25 

4.2 CDH ............................................................................................................................................. 26 

4.2.1 Software Framework – KubOS Linux .................................................................................................................. 26 

4.2.2 Software Architecture ........................................................................................................................................ 29 

4.2.3 Software Operation ............................................................................................................................................ 33 



   
 

   
 

4.2.4 ADCS Controller .................................................................................................................................................. 36 

4.2.5 Hardware ............................................................................................................................................................ 38 

4.3 Radio ........................................................................................................................................... 39 

5 Physical Implementation/Simulation Development ................................................................. 42 

5.1 Payload ....................................................................................................................................... 42 

5.1.1 Primary Payload Access Statistics....................................................................................................................... 42 

5.1.2 Secondary Payload – US Case Study................................................................................................................... 43 

5.2 CDH ............................................................................................................................................. 45 

5.2.1 ADCS ................................................................................................................................................................... 46 

5.3 Radio ........................................................................................................................................... 46 

6 Experimental Methods/Model Validation ................................................................................ 50 

6.1 Software Integration Testing ........................................................................................................ 50 

6.2 Ground Station Operator and Satellite Image Viewing .................................................................. 50 

6.3 Radio Antenna Deployment ......................................................................................................... 51 

7 Design Specifications and Evaluation Matrix ........................................................................... 52 

7.1 CDH ............................................................................................................................................. 52 

7.2 Radio ........................................................................................................................................... 52 

8 Budget .................................................................................................................................... 56 

9 Conclusions ............................................................................................................................. 58 

10 References .......................................................................................................................... 59 

11 Appendices ......................................................................................................................... 61 

 

 

 

 

 



   
 

   
 

Abbreviations 

Abbreviation Description 

ADCS Attitude Determination and Control System 

CDH Command and Data Handling 

EPS Electrical Power System 

RF Radio Frequency 

WinSAT University of Windsor Space and Aeronautics Team 

CSDC Canadian Satellite Design Challenge 

MCC Mission Control Center 

ARO Amateur Radio Operator 

RTOS Real-Time Operating System 

MBM2 Motherboard Module 2 

BBB Beaglebone Black 

LEO Low-Earth Orbit 

P-POD Poly Picosatellite Orbital Deployer 

OBC Onboard Computer 

 



   
 

   
 

Table of Figures 

Figure 1 - Selfie-Sat concept of operations [1]. ............................................................................. 9 

Figure 2 - Satellite system architecture. ...................................................................................... 11 

Figure 3 - Payload subsystem architecture. ................................................................................ 20 

Figure 4 - ArduCam Mini 2MP Camera Sensor [9]. .................................................................... 21 

Figure 5 - Payload module operation state diagram. .................................................................. 25 

Figure 6 - KubOS software stack [10]. ........................................................................................ 26 

Figure 7 - KubOS Linux boot sequence [10]. .............................................................................. 28 

Figure 8 - Flight software architecture. ........................................................................................ 29 

Figure 9 - Deployment application procedure [10]. ..................................................................... 31 

Figure 10 -  CDH software operation state diagram. .................................................................. 33 

Figure 11 - CDH I2C Diagram for ADCS controller..................................................................... 37 

Figure 12 - Pumpkin MBM2 [13]. ................................................................................................. 39 

Figure 13 - Satellite Dipole Antenna Radiation Pattern (left) and Ground Station Yagi-Uda 

Radiation Pattern (right). .............................................................................................................. 40 

Figure 14 - Horizontal transmitting Radiation Pattern (left) and 45 deg. Transmitting Radiation 

Pattern (right). .............................................................................................................................. 41 

Figure 15 - Vertical transmitting Radiation Pattern (left) and  Ground Station Radiation Pattern 

(right). ........................................................................................................................................... 41 

Figure 16 - Secondary payload US coverage over 3 days assuming ISS orbit. ........................ 44 

Figure 17 - Secondary payload US percent coverage over time in ISS orbit. ........................... 44 

Figure 18 - Secondary payload US percent coverage over time in Sun-Synchronous orbit. .... 45 

Figure 19 - "Flat-Sat" software integration testing. ..................................................................... 45 

Figure 20 - ADCS controller comms test ..................................................................................... 46 

Figure 21 - ACDS controller IMU read test ................................................................................. 46 

Figure 22 - Antenna Deployment System ................................................................................... 47 

Figure 23 - Balun Connections .................................................................................................... 48 

Figure 24 - Substrate Example .................................................................................................... 48 

Figure 25 - EMPro Balun Design ................................................................................................. 49 

Figure 26 - KubOS ground station operator and WinSAT web application for satellite imagery 

viewing. ......................................................................................................................................... 50 

https://uwin365-my.sharepoint.com/personal/grebej_uwindsor_ca/Documents/Team04FinalReport.docx#_Toc47735727
https://uwin365-my.sharepoint.com/personal/grebej_uwindsor_ca/Documents/Team04FinalReport.docx#_Toc47735728
https://uwin365-my.sharepoint.com/personal/grebej_uwindsor_ca/Documents/Team04FinalReport.docx#_Toc47735729
https://uwin365-my.sharepoint.com/personal/grebej_uwindsor_ca/Documents/Team04FinalReport.docx#_Toc47735732
https://uwin365-my.sharepoint.com/personal/grebej_uwindsor_ca/Documents/Team04FinalReport.docx#_Toc47735733


   
 

   
 

 

1 Introduction 

This project is part of the WinSAT team’s objective to design, build, and test a 3U earth 

observation cube satellite (CubeSat) for the CSDC competition. The CSDC is a Canada-wide 

satellite design competition involving a number of universities across the country involving the 

construction of a CubeSat for Earth observation in low-earth orbit. CubeSat’s are small 

satellites, typically made of cheaper components, that allow easier access for companies and 

universities to space and space research through a simple, modularized platform.  The main 

objective or primary operation of this specific satellite involves the acquisition of a “Space-

Selfie” image whereby amateur radio operators around the world are able to establish contact 

with the satellite during a pass, request an image of their current coordinates, and then have 

that image downlinked to them for immediate viewing. The CSDC guidelines [1] have provided 

a concept of operations of the primary mission objective. 

 

Figure 1 - Selfie-Sat concept of operations [1]. 

The figure can be summarized in the following steps as specified in the CDSC rules and 

requirements [1]: 

1. Once Selfie-Sat has been commissioned and is ready for nominal operations, ARO’s 

from around the world will contact the MCC at the University of Windsor in order to 

request a “Selfie-Sat Pass”. The operator will send the location (latitude, longitude) of 

the centre point of the desired space selfie image.  



   
 

   
 

2. The MCC will reply to the ARO with information about the Selfie-Sat Pass start and end 

times, and a password that the ARO will use for the pass.  

3. They will uplink the required roll angle (≤ 25 deg) for Selfie-Sat to be able to point the 

camera boresight (middle of the image) at the ARO’s specified location during the pass.  

4. During the pass, the ARO will contact Selfie-Sat, and will uplink the command to acquire 

an image when Selfie-Sat is over the desired imaging area. Only one image will be 

acquired during a Space-Selfie Pass.  

5. As soon as the command is uplinked, Selfie-Sat will immediately take the “space-selfie” 

photo with the Selfie-Cam payload imager.  

6. Selfie-Sat will then immediately begin to downlink the Space-Selfie photo to the ARO.  

The project goal is to support these mission operations through the design, building, and 

testing of three of the onboard satellite subsystems. This project involves the design of the 

following subsystems: 

1. CDH – handles all onboard data and communication between all subsystems on the 

satellite. 

2. Radio – handles all command and data transfer and overall communication between 

the ground station and satellite. 

3. Payload – includes the onboard imagers or cameras for acquiring satellite imagery as 

well as providing the interface between the cameras and the rest of the satellite. 

 

 



   
 

   
 

                 Figure 2 - Satellite system architecture. 

1.1 Payload 

The payload subsystem incorporates the onboard imagers for Earth observation as well as the 

hardware and software needed to interface the payload imagery to the rest of the satellite as 

well as control the onboard imagers. As outlined previously, the payload directly services both 

the primary and secondary mission objectives: 

1. Primary Mission Objective: Acquisition of a single-point access “Space-Selfie” image 

for downlink to ARO’s. 

2. Secondary Mission Objective: Acquisition of several images in sequence to be filtered 

and stitched to provide area coverage or global coverage. 

The payload design involves the selection of imagers to service both of these mission 

objectives and provide the software and hardware design of the payload module that will 

control the cameras and prepare them for downlink to ground station operators.  

1.2 CDH 

The purpose of the CDH subsystem is to be the main “brain” of the satellite by coordinating all 

telemetry, commands, and other data between all subsystems onboard the satellite. The CDH 

subsystem is the main interface between all subsystems and performs the decision-making for 

the satellite. The goal involves the selection and implementation of a hardware and software 

design that will allow for safe and robust communication with all of the subsystems onboard the 

satellite and seamless integration with all of the components.  

1.3 Radio 

Establishing a good communication link between the ground station and the satellite is 

essential to all CubeSat missions. CDH, EPS as well as the Structural divisions are directly 

affected by the performance of the RF communications. As the satellite reaches a certain 

elevation angle, the ground station will begin to uplink commands and the satellite will downlink 

its imagery data of the Earth from the previous pass in accordance with the mission objective. 

To ensure that the satellite and ground station relay all data to one another, proper 

transmission and reception must be provided by antennas and radio frequency electronics to 

properly interpret the data. The RF and Structural divisions are both responsible for the 



   
 

   
 

construction of the antennas and their release mechanisms, ensuring proper orientation upon 

deployment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

2 Benchmarking  

CubeSat satellites have been used in countless previous missions for a number of different 

research objectives and goals. Much time was spent looking into previous CubeSat designs to 

weigh the current state-of-the-art and technologies in the area to allow for a more informed 

decision regarding the design of the WinSAT CubeSat. 

2.1 Software Frameworks 

[Jon] 

Previous CubeSats have used a variety of different onboard software and hardware 

architectures for the main onboard computer with advantages and disadvantages for each 

configuration that are more suitable for certain mission objectives and requirements. A 

thorough investigation was completed into previous software frameworks used in previous 

missions that now have flight heritage. A recent publication [2] summarizes the most popular 

designs used on some previous CubeSat missions: 

1. Nasa’s Core Flight System (cFS)  

• software framework for satellite missions designed and maintained by NASA 

• significant flight heritage and reliability 

• 3-layered architecture with several layers of abstraction above the RTOS 

•  Requires significant development above lightweight and minimal architecture 

2. FreeRTOS 

• Open-source, real-time operating system for embedded systems. 

• Large open-source community and documentation 

• Very good performance and reliability 

• Not specifically designed or intended for satellite use, so it would require 

significant development of satellite specific functionality 

3. KubOS Linux 

• Lightweight, Linux distribution made specifically for satellites 

• Provides ease of use of Linux which handles all lower-level functionality 

• Includes tooling, community, and development support that comes with Linux 



   
 

   
 

• Comes pre-packaged with general satellite functionality common to all satellite 

missions (logging, telemetry database) 

• Allows for higher-level development (i.e. Python) 

• Requires much higher RAM/ROM resources due to Linux being heavier than a 

simple RTOS. 

2.2 Hardware Protection 

[Adam] 

Hardware protection needs to be in place for processors, memory, and internal device 

communication. Most safety features seen in embedded systems in the automotive industry 

are needed on top of material protection for equipment to function in the atmospheric 

environment. NASA [3] writes about the hardware protective measures they find critical for 

reliable operation of small spacecrafts and especially with CubeSats: 

1. CPU Lockstep 

• Controllers have multicore processors where each core will run the same set of 

instructions and make sure they generate the same output before proceeding 

• Needed for controllers operating in space as equipment is susceptible to bit 

flipping (bit errors) due to high energy particles colliding with the circuitry 

2. ECC Memory 

• Error correcting code that checks memory devices (RAM and FLASH) for bit 

errors 

• Code compares memory values to a checksum (compressed image of the 

memory using hashing algorithm) 

• Memory blocks will be locked if error is detected and will be corrected using the 

checksum 

3. CRC 

• Cyclical Redundancy Check for communication and memory error checking 

• Data is divided by a polynomial (modulo division) and the remainder is used to 

verify the data after transmission through a communication protocol or after 

writing the data to memory 



   
 

   
 

• CRC is calculated then appended to the data payload before transmission so the 

receiver can compare CRC field of data packet to its payload field ensuring data 

is valid 

• CRC is calculated before writing to memory devices so that the memory can be 

verified after written 

• CRC can’t be used to correct code if an error is detected with it (unlike 

checksum) 

4. Watchdog timers 

• Timer circuit that must be “fed” by the processor or the watchdog will reset the 

controller to refresh the processors in case something went wrong 

• Clock drivers of watchdog timers can be internal (resistor capacitor circuit) or 

external (crystal oscillator) 

5. Rad-Hard 

• Radiation Hardened components are modelled after COTS (commercial off-the-

shelf) devices that developers use on test benches 

• Protects from single-event upsets (logic errors) and single-event latch-ups 

(transistor malfunctions)[3] by reducing the total ionizing dose the components 

get from high energy particles in orbit 

2.3 Radio Frequency 

[Pierre] 

The selection and design of radio frequency communications systems for CubeSats differ 

based on the data rate, orbital pattern, and satellite structure. The antennas, satellite antenna 

release mechanisms, transceivers and ground station components can vary dramatically 

between different CubeSats to provide good communications links. Analyzing various RF 

designs from other CubeSat teams provided different options for components and design 

methods that could be used. 

As these thesis and masters papers explore in depth [4], [5], [6], there are several antenna 

configurations and structures to deploy them. 

1. Satellite Antennas 

• Monopole 



   
 

   
 

• Dipole 

• Patch 

• Turnstile 

2. Ground Station Antennas 

• Yagi-Uda 

• Dish 

Transceivers and low noise amplifiers can present large costs for CubeSat teams to design 

and manufacture. Depending on the number of members on the RF division, some teams have 

either chosen to design a transceiver from scratch, modify an existing one, use various 

components to build one or purchase a space-rated module from a RF distributor. A master’s 

published paper from the Virginia Polytechnic Institute and State University [7] describes in 

detail their ground station transceiver layout using purchased components as well as fully 

designed and constructed ones. An MIT Masters student’s research on CubeSat 

communications  [8] presents a thorough list of previously completed satellites and the 

purchased transceivers used on onboard. 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

3 Design Criteria, Constraints, and Deliverables 

As described by the CSDC guidelines [1], the following criteria were considered when 

designing and testing various scenarios. 

3.1 Orbit 

[Pierre] 

Teams should design their missions to be able to operate in a LEO, between 400 km and 800 

km. At the time of the release of this document a launch has not been procured, and more 

specific orbit parameters cannot be given; thus, it is advantageous to have a mission and 

satellite design which can operate in both a sun-synchronous orbit (with an Equator Crossing 

Time of approximately 10:30 ± 1 hour), and in the orbit of the International Space Station 

(inclination = 51.66°).  

• [CSDC-0050] Orbit Knowledge It shall be possible to determine the spacecraft’s orbit 

parameters throughout the mission, to an accuracy as required by the mission [1]. 

Assuring communications stay within the amateur radio band, frequency ranges were limited to 

144-148 MHz in the very high frequencies and 420-450 MHz in the ultra-high frequencies. In 

turn, these frequency ranges restricted the possible bandwidth.  

3.2 Payload 

[Jon] 

[CSDC-0010] The spacecraft shall fulfill the “Selfie-Sat” mission as outlined in the Concept of 

Operations (Section 3), to acquire a “Space-Selfie” optical image when commanded by an 

Amateur Radio Operator, and to downlink it immediately to that Operator.  

[CSDC-0020] The spacecraft shall acquire at most one image per Space-Selfie Pass.  

[CSDC-0030] The Space-Selfie image shall encompass an area of at least 40km x 40km, and 

not more than 100km x 100km, on the ground at nadir, assuming a 400km altitude.  

[CSDC-0040] The spacecraft may contain additional payloads at the Team’s discretion and 

choice.  



   
 

   
 

3.3 Command and Data 

[Adam] 

[CSDC-0180] The spacecraft shall have the ability to receive and execute immediate or time-

tagged commands from the Mission Control Centre.  

[CSDC-0190] The spacecraft shall have a subset of commands for Amateur Radio Operators 

(ARO’s) to establish a connection with the spacecraft during a Space-Selfie Pass, and to 

command the spacecraft to immediately acquire an image with its Selfie-Cam. The spacecraft 

shall not accept any other immediate or time-tagged commands from ARO’s.  

[CSDC-0200] All uplinked commands from the Mission Control Centre shall be encrypted, using 

as a minimum 56-bit-key Data Encryption Standard (DES). Commands uplinked by Amateur 

Radio Operators during a Space-Selfie pass are not required to be encrypted.  

[CSDC-0210] If the spacecraft has not received a valid encrypted command for 48 hours, it may 

accept un-encrypted commands.  

[CSDC-0220] The spacecraft shall have the ability to store time-tagged commands for up to 

three days prior to executing them.  

[CSDC-0230] Any safety-critical or deployment commands shall be implemented as a two-step 

process.  

[CSDC-0240] The spacecraft shall record at least four different points of spacecraft health 

telemetry, each at a frequency of at least one sample every minute.  

[CSDC-0250] The spacecraft shall time-tag all telemetry data.  

[CSDC-0260] Under nominal operational conditions, the spacecraft shall have the ability to 

downlink telemetry data with a latency of less than 12 hours from when it was recorded.  

3.4 Radio 

[Pierre] 



   
 

   
 

• [CSDC-0120] The spacecraft shall comply with the International Telecommunications 

Union (ITU) applicable radio licensing regulations for the required Radio Frequency 

operations 

• [CSDC-0130] The spacecraft shall not generate or transmit any radio signal from the 

time of integration into the launch dispenser until at least five minutes after on-orbit 

deployment; however, the spacecraft can be powered ON immediately following 

deployment. 

• [CSDC-0140] The spacecraft shall use the AX.25 protocol for communications with the 

Amateur Radio Operators during a Space-Selfie pass. The uplink communications rate 

shall be at least 1200 bps; the downlink communications rate shall be 9600 bps. 

Communications shall be duplex. 

• [CSDC-0150] Communications with Amateur Radio Operators for Space-Selfie passes 

shall be possible above an elevation angle of 10 degrees, with a link budget margin of 

at least 6dB. 

• [CSDC-0160] Under nominal operational conditions, the spacecraft shall have the ability 

to downlink the entire Space-Selfie image within 90 seconds. 

3.5 Deliverables 

[Jon] 

The team will deliver a final “Flat-Sat” implementation of the satellite that will simulate the basic 

satellite functionality and behavior while in orbit. A “Flat-Sat” is the final satellite setup in which 

all the satellite components are connected and integrated together without the components 

being housed in the final satellite structure. This allows for testing and simulation of the satellite 

software as well as the integration with all the satellite subsystems’ hardware and software to 

test not only individual subsystem designs but also the interfacing and communication between 

all of them as well. This will verify the design and help to discover system vulnerabilities and 

weaknesses before the final release as well as prove that the design meets the competition 

requirements specified above. 

 



   
 

   
 

4 Design Methodology 

The following sections will describe the process through which the final design was achieved, 

including all of the development and testing procedures.  

4.1 Payload 

[Jon] 

This section will provide an overview of the system architecture and high-level interface of the 

payload subsystem onboard the CubeSat unit as well as the general operation of the payload 

subsystem during flight. All calculations for the following design are summarized here, and full 

calculations can be found in the Appendix A. 

The payload subsystem is composed of the Raspberry Pi Compute stick that interfaces both 

the primary and secondary payloads to the CDH OBC. The compute stick is responsible for 

accepting commands from the OBC, sending image requests to both the primary and 

secondary payload sensors, image processing, and transferring any other needed image data 

or telemetry back to the OBC. Sample software written for the payload module can be found in 

Appendix H. 

Both the primary and secondary payload sensors communicate with the RPi Compute Stick 

over I2C and SPI protocols. I2C connection is made directly from the compute stick to both the 

image sensors and is responsible for sensor configuration (setting resolution, exposure, 

brightness, etc.). SPI is used for general data transfer, such as image data as well as 

command and telemetry information, because of its much faster speed compared to I2C.  

The following diagram presents a high-level overview of the hardware interfaces between the 

camera sensors, the payload module, and the OBC. 

 

Figure 3 - Payload subsystem architecture. 



   
 

   
 

4.1.1 Payload and Secondary Payload Sensor 

After thorough research and investigation, the Arducam Mini Camera Module Shield with 

OV2640 image sensor was selected to be used for both cameras that service both the primary 

and secondary mission objectives.   

Various sensors were researched but due to previous flight heritage, reliability, and suitable 

camera resolution and pixel size for primary payload mission requirements, the Arducam Mini 

camera chip was ultimately selected. The specifications for the Arducam Mini, including an 

internal block diagram, and a comparison of several 

optical sensors specifications that were researched can 

be found in Appendix A.  

The device incorporates both the Omni Vision OV2640 

image sensor with the ArduChip - a camera controller 

that hides all of the hardware and camera timing while 

providing a friendly SPI interface for command and data 

transfer and an I2C interface for camera configuration. 

The unit has been flight-proven and tested on previous 

CubeSat missions. An open source library is also provided for the unit, with APIs and 

documentation, for faster start-up and integration times. The architecture is shown in Appendix 

A of the ArduChip shield along with the camera. It should be noted that the I2C connection (for 

configuring the camera) is made directly to the image sensor from the payload board. The 

Arducam Mini Shield also provides numerous built-in functions or modes depending on current 

mission status or goals [9]. These are described below: 

Single Capture Mode 

After issuing a capture command via SPI port, the module will capture a frame and load it into 

the frame buffer while setting the completion flag bit in the register. The CDH module will poll 

this register to check if capture is done and load image into main memory. 

Multiple Capture Mode 

This is an advanced capture mode. By setting the number of frames in the capture register, the 

ArduCam will capture consequent frames after issuing the capture command. 

Figure 4 - ArduCam Mini 2MP Camera Sensor [9]. 



   
 

   
 

JPEG Compression 

This function is implemented in the image sensor. With proper register settings, the user can 

get different resolution with the image output. 

Low Power Mode 

Reduces power consumption by shutting down sensor and memory circuits. 

Normal Read and Burst Read Mode 

Normal read reads each image data by sending a single SPI command. Burst read allows the 

user to send one command and receive multiple image data. 

Image Sensor Control 

Allows the user to set image sensor settings like exposure, white balance, brightness, contrast, 

and color saturation. 

4.1.2 Primary Payload Lens Selection 

Following the camera sensor selection, calculations and analysis are completed to determine 

the correct lens to mount to the camera module. 

Competition requirements specify that at an altitude of 400km, the satellite is required to output 

an image that covers between a 40km x 40km area to a 100km x 100 km area at nadir and is 

able to obtain an image from +25 degrees cross-track off nadir to -25 degrees cross-track off 

nadir [1]. However, no spatial resolution requirement is provided. Often in remote sensing 

applications, a certain degree of spatial resolution is required in order to view certain features 

or areas on Earth with enough detail.  

The team selected a spatial resolution of around 50m/pixel as a reasonable resolution of 

satellite imagery for this application. The team would attempt to achieve the most coverage 

area obtained by the sensor while comprising between the detail or spatial resolution of the 

image itself and the amount of data that would be produced by a single image. 50m/pixel 

seemed to be an appropriate compromise between image quality and amount of data. Spatial 

resolution would be one of the main factors that would go into the primary payload camera 

design decisions. 



   
 

   
 

Optical calculations and tabulated results for spatial resolution and image coverage for the 

OV2640 image sensor with a variety of lens mounted are shown in Appendix A. 

From these results, a 16mm focal length lens is an appropriate compromise between spatial 

resolution and image coverage that satisfy the primary payload requirements. The 

specifications summary, of an 16mm lens mounted on the Arducam Mini Shield, is also shown 

in Appendix A. 

4.1.3 Secondary Payload Lens Selection 

The objective of the secondary payload is to provide area coverage over countries or other 

large areas around the world. The goal of the secondary payload sensor is capture continuous 

images over its lifetime that will be filtered, edited, and stitched together to create an overall 

coverage map of the nation. Due to limiting capabilities onboard the satellite, the coverage 

acquisition will be restricted to single countries. The goal is to then setup an online resource or 

dataset that will provide real-time coverage maps and images to users for big data or algorithm 

development for remote sensing on a national scale. 

To achieve the objective of the secondary payload, the secondary payload sensor is, again, a 

optical imager and uses the same camera sensor as the primary payload. Using the same 

camera sensor for both primary and secondary payloads allows for less development time as 

much of the integration, testing, and development will be the same or similar for both payloads 

allowing more time to be focused on other aspects of the satellite design. 

However, due the difference in objectives between the primary and secondary payloads, the 

secondary payload will be acquiring considerably more data and images than the primary 

payload because of its main objective of national coverages. Because of this, and the 

limitations of the satellite in terms of downlink bandwidth and speed, the secondary payload 

sensor will be acquiring images that cover much more area than the primary payload sensor to 

limit the number of images being captured during operation. In other words, the secondary 

sensor will be using the same number of pixels to cover a much larger area, hence reducing 

the spatial resolution of the secondary sensor from the spatial resolution of the primary payload 

“Selfie-Sat” camera. Also, with a much larger coverage area, the sensor is able to obtain full 

national coverage much faster. A compromise between spatial resolution, image coverage 



   
 

   
 

speed, and amount of downlinked data was made and mostly revolves around the lens 

selection. 

Appendix A provides a tabled list of a variety of focal lengths that can be used for the 

secondary payload sensor, including at nadir image coverage and pixel resolution, as well as 

image capture rate and data rate assuming the same image resolution of the ArduCam defined 

above for the primary payload. No information is provided about off-nadir coverage and 

resolution because the secondary payload will only be acquiring images when pointed at nadir.  

It should also be noted that the data rate calculation assumes a JPEG compression of about 

10:1 within the ArduCam sensor, although JPEG compression varies considerably depending 

on the image contents and pixel values. 

From the calculations and analysis, the 6 mm lens was selected as the lens for the secondary 

payload sensor as good compromise between spatial resolution and the amount of data that 

needs to be downlinked from the satellite. A summary of the ArduCam camera sensor with the 

mounted 6mm lens specifications is shown in Appendix A. 



   
 

   
 

4.1.4 Payload Operation 

This section will describe the general operation of the payload 

subsystem, including all of the steps it takes in order to 

complete its mission objective. The payload subsystem is 

responsible for the acquiring images for both the Selfie-Sat 

and secondary mission objectives, processing them, and then 

transferring them to the OBC. In order to do this, the payload 

subsystem will follow the general operation shown in Figure 5.  

Initialization 

This stage encompasses the time from when the satellite is 

undergoing deployment activities. In other words, this the 

deployment stage of the payload subsystem. During this 

stage, both cameras will be powered on, sent initialization 

commands to initialize hardware information of the system as 

well as configure the sensors where necessary (setting image 

resolution, brightness, image format, etc.). After initialization 

and deployment are complete, the payload will be placed into 

low-power mode. 

Low-Power Mode 

This mode occurs during nominal operation but only 

when the primary and secondary payload camera sensors are not in operation and are shut 

down completely. 

Coverage Mode 

This mode occurs during the time when the secondary payload sensor is turned on and is 

actively acquiring national coverage images and transferring them to the CDH module for 

eventual downlink. 

Capture Mode 

This mode occurs during the time when the primary payload sensor is turned on and is actively 

acquiring Selfie-Sat images and transferring them to the CDH module for eventual downlink. 

Figure 5 - Payload module operation state diagram. 



   
 

   
 

4.2 CDH 

[Jon] 

This section will provide an overview of the system architecture and high-level interface of the 

CDH OBC subsystem onboard the CubeSat unit as well as the general operation of the 

satellite software during flight. An in depth overview is provided for the hardware and software 

design used. 

4.2.1 Software Framework – KubOS Linux 

The target platform of the CDH OBC software is KubOS Linux. KubOS is an open-source, flight 

software framework that provides a full-fledged Linux distribution for easier development and 

start-up times. KubOS comes prepackaged with hardware APIs, core services, developer 

tools, and heavy documentation and support community to allow most of the design work and 

time to be focused on mission specific features of the satellite. KubOS also comes ready from 

day one with many other features already in place including logging, telemetry handling, error 

handling. Due to the limited development time, being a first-year team, and not an extensive 

amount of software experience in the field, the team considered that it may be difficult to build 

our own command and control framework from scratch on top of a standard RTOS system. 

The KubOS software framework seemed to be the best decision.  

KubOS does have some key disadvantages from a regular 

RTOS system that should be discussed. One of the main 

disadvantages of the KubOS Linux platform is its limited 

number of supported OBCs. However, the team decided to 

choose the OBC hardware after deciding on the software 

framework, so this was no issue. Additionally, KubOS 

Linux, being a Linux distribution, does not meet real-time 

requirements, as a regular RTOS system would. Since 

real-time requirements on the OBC are not required to meet 

mission requirements, again, this was no issue in the design process. 

Figure 6 - KubOS software stack [10]. 



   
 

   
 

KubOS is designed for taking care of all communication and data handling between every 

subsystem of the satellite. The KubOS system is built off three main aspects, described in the 

following sections [10] and shown above in Figure 6. 

4.2.1.1 KubOS Linux  

KubOS Linux is the custom Linux distribution for satellites and runs directly on the OBC 

hardware. It provides much of the low-level functionality already in place, including hardware 

abstraction (I2C, SPI), logging, telemetry and error handling, system monitoring, and many 

other typical services provided by an OS.  

4.2.1.2 KubOS Services  

On top of KubOS Linux is what are called KubOS services which are any processes that 

interact with the satellite. Services do not make decisions but merely provide an interface 

between satellite subsystems or hardware and the mission applications. Services expose their 

functions to mission applications with GraphQL requests over HTTP. There are three main 

types of services:  

1. a)  Core Services – core functions already included with KubOS like monitoring, 

telemetry, etc.  

2. b)  Hardware Services – expose mission software to hardware devices (ADCS, EPS, 

etc.)  

3. c)  Payload Services – type of hardware service specific to a mission and its payload.  

4.2.1.3 Mission Applications  

Mission applications are what describe the behaviour of the CDH subsystem on the satellite. 

These are modularized applications that can be run continuously or just once, and they control 

the behaviour of the satellite. They are designed to be lightweight and portable and control 

certain isolated tasks onboard. Small, simple mission applications reduce the possibility of a 

global failure due to edge cases in certain applications.  



   
 

   
 

4.2.1.4 Boot Loader 

As seen in the comparison above, KubOS Linux is a much more abstract OS meaning it is 

much more resource intensive and does come with more risk. Because of this, KubOS pairs 

itself with U-boot, a widely used bootloader that manages the Linux kernel and the core of the 

system. The bootloader actually provides the ability to update the entire OS during flight if 

needed. [10] 

The following [10] describes a high-level view of the boot sequence of a system running 

KubOS Linux.  

 

Figure 7 - KubOS Linux boot sequence [10]. 

Bootloader 0  

This comes with the OBC and is specific to that OBC. Bootloader 0 is responsible for the 

transfer of the next bootloader into SDRAM to be executed. It is stored in system ROM.  

Bootloader 1  

This is the second boot loader that loads U-Boot from main storage into SDRAM for execution.  

U-Boot  

The main responsibility of U-Boot is to load the kernel form the SD card into SDRAM and 

provides a basic CLI for modifying the kernel before it’s loaded. It can also be used as an OS 

upgrade and recovery system before the kernel is loaded. U-Boot also has environment 

variables that can be used to store information of high impact to the system through reboots.  



   
 

   
 

4.2.2 Software Architecture 

The high-level software architecture of the CDH subsystem module is shown in the below 

figure. It should be noted that everything coloured blue in the below diagram is provided with 

KubOS and anything coloured in red is mission software that will be written by team.   

 
 

Figure 8 - Flight software architecture. 

4.2.2.1 Services  

Application Service  

The application service is responsible for monitoring and managing all mission applications for 

the system. Multiple versions can be tracked here allowing for easy upgrades and rollbacks. 

This is a core service provided by KubOS.  



   
 

   
 

Monitoring Service  

This is a hardware service that deals with the OBC itself. The monitoring service provides 

functionality to check current running processes and memory usage. This is a core service 

provided by KubOS.  

Telemetry Database Service  

The telemetry database service uses a SQLite database to store telemetry data generated by 

hardware and payload services until it is requested for transmission to the ground station. This 

is a core service provided by KubOS.  

RF Communication Service  

The communication service processes all the communication between the ground or radio 

operators that is received and sent through the RF hardware that simply performs the 

communication between the satellite and grounds stations.  

Payload Service  

This is a hardware service specific to the payload subsystem. It is responsible for the 

communication and interface between the payload module, including both the primary and 

secondary payloads, and the OBC software. This module is be able to facilitate data and 

commands between the primary payload and the rest of the software architecture.  

EPS Service  

Hardware service that facilitates the interface between the OBC and the EPS module. It is 

responsible for the bi-directional communication of commands, telemetry, and other data 

between the EPS module and the OBC. KubOS comes providing an API for the Clyde Space 

EPS module that will be used for the EPS subsystem.  

 

 



   
 

   
 

ADCS Service  

This is a hardware service that facilitates the interface between the OBC and the ADCS 

subsystem. It is responsible for the bidirectional communication of commands, telemetry, and 

other data between the ADCS module and the OBC.  

4.2.2.2 Applications  

Deployment Application  

This mission application is responsible for handling the deployment sequence and follows the 

following procedure:  

1. Keep track of hold time provided by the 

launch provider  

2. Deploy deployables (burn wire)  

3. Powering on and configuration of 

subsystems.  

4. Detumbling and stabilization of CubeSat.  

Figure 9 is a state diagram providing a high-

level overview of the deployment sequence in 

regards to the OBC software.  

“Deployed” and “deploy_start” variables are 

stored as U-boot environment variables, the 

most reliable and persistent storage on the 

OBC. These track if the satellite has been 

deployed and how long since the deployment 

sequence has begun, respectively. This application uses the RTC.  

Telemetry Application  

The telemetry application is responsible for collecting and storing telemetry in the telemetry 

database using the telemetry database service. This application will poll all hardware services 

Figure 9 - Deployment application procedure [10]. 



   
 

   
 

(services that interface to satellite subsystem hardware) in a 1 minute interval for all required 

telemetry items.  

Housekeeping Application  

The housekeeping application is responsible for monitoring all satellite hardware, including the 

OBC itself. The application uses the monitoring service and other hardware services to keep 

track of health telemetry, monitoring status and other critical items such as memory and power. 

The application will operate on a 1 hour interval. Other functions of this application include but 

are not limited to:  

• Cleaning the telemetry database  

• Checking file system and memory usage  

• Issuing test queries to services  

• Checking critical telemetry items  

• Shutting off non-essential hardware when battery reaches critically low status 

• Cancelling operations and going into power generation state  

• Monitoring battery temperature  

Payload Operation Application  

This application is responsible for the general operation of the payload subsystem. This 

involves sending commands and requests for image acquisition or camera configuration as 

well as receiving image data and telemetry from the payload module.  

ADCS Operation Application  

This application is responsible for the general operation of the ADCS subsystem. This involves 

sending commands and requests for ADCS behaviour as well as receiving vital telemetry from 

the ADCS module. For example, this application would be responsible for commanding ADCS 

to place the satellite in the appropriate attitude.  

 

 



   
 

   
 

EPS Operation Application  

This application is responsible for the general operation of the EPS subsystem. This involves 

sending commands and requests for EPS behaviour as well as receiving vital telemetry from 

the EPS module. For example, this application would be responsible for collecting telemetry, 

such voltage and current levels, from the EPS module.  

RF Operation Application  

This application is responsible for the general operation of the RF subsystem. This involves 

sending commands and requests for RF behaviour as well as receiving vital telemetry from the 

RF module. This application is also responsible for regularly downlinking critical telemetry data 

to ground station using the RF communication service.  

4.2.3 Software Operation 

Figure 10 is a high-level 

description of the boot or 

deployment sequence of the 

satellite from the moment it is 

ejected from the launch vehicle.  

4.2.3.1 Deployment Task  

This task involves the procedures 

from the moment the satellite is 

ejected from the P-POD. A 30 

minute wait is required after P-

POD ejection according to 

CubeSat standards. After the 

deployment task is completed, 

the initialization task begins.  

Figure 10 -  CDH software operation state diagram. 



   
 

   
 

4.2.3.2 Initialization Task  

Following deployment, the satellite will begin to initialize satellite subsystems. Most important, 

however, is the EPS subsystem to begin charging and the RF subsystem to initialize 

communication with ground station. While EPS begins charging the battery, RF will send the 

ground station an ack and wait for a confirmation message. Following confirmation of 

communication with the ground, the satellite will initialize ADCS and detumble and then 

initialize payload. System health checks will also be completed, and then the satellite will enter 

nominal operation.  

4.2.3.3 Nominal Task  

This is where the satellite will spend nearly all of its time. This is normal operation and nominal 

modes will be discussed in the next sections. At any point during the satellite lifetime, if a 

satellite reboot is required, for example due to some system or unrecoverable error, the 

satellite will rerun the initialization task.  

For proper operation, the satellite has predefined modes and transition between the modes 

occur autonomously depending on system information, health, status, and other data. Each 

mode or task has predefined and dedicated tasks based on what the satellite encounters.  

Critical Mode  

This mode occurs when the battery has very low capacity. All non-critical subsystems and 

functionality are powered down or stopped until the battery is charged to a certain threshold. 

The transmit rate to the ground station is also reduced. Only the most critical and essential 

components are operational to conserve power.  

Nominal Mode  

The satellite is in normal mode of operation, monitoring system health and receiving and 

sending commands from the ground station. The payloads are off.  

 



   
 

   
 

Science Mode  

This is identical to nominal except the only difference here is that the payloads are powered on 

and “Selfie-Sat” images or area coverage images are being collected.  

4.2.3.4 Logging 

Since the CDH is utilizing KubOS, a full Linux distribution, most of the logging and file system 

functionality is provided by the OS itself.  

The CDH module will utilize rsyslog to route log messages to the correct log file and rotate 

them when they become too large. Every service and application will route its log messages to 

its own specific log file, including a time-tag as well as description and level of the logging item.  

4.2.3.5 Log Levels 

There are four levels of logging that separate and identify messages based on their level of 

criticality:  

1. INFO – General housekeeping items that highlight the process of applications and 

services.  

2. WARN – Describe potentially harmful situations.  

3. ERROR – Describe serious events but still allow the application and service to continue 

running. Further system health checks and specific error handling procedures will be 

completed to resolve the error. If unable to resolve the error, the message will be 

escalated to a fatal message.  

4. FATAL – Describe very serious events that have led to applications or services aborting. 

Fatal messages result in full system reboot.  

4.2.3.6 Log Rotation  

Log files have a maximum size of 10KB. Once the log file reaches this maximum size, the file 

is renamed as an archived file and a new log file is started. The archived files are renamed 

using the same name they had previously but include a time stamp of when they were 



   
 

   
 

generated. A total of ten log files are stored for all applications and services at all times, 9 

archived files and 1 current log file. Older archived log files are deleted.  

4.2.4 ADCS Controller 

[Adam] 

The ADCS subsystem controls the trajectory of the satellite, orientates the solar panels to face 

towards the sun, and provides positional information to the OBC. A separate MCU 

(microcontroller unit) is needed to control all the sensors and devices (gyroscope, sun sensors, 

magnetorquers, and reaction wheels). The CDH team is responsible for the communications 

between all the devices, sensors, and both MCU (OBC and ADCS controllers); the ADCS 

algorithms are not this team’s responsibility. 

4.2.4.1 Hardware Abstraction 

The ADCS controller doesn’t have flight software like the OBC (KubOS) so the CDH team had 

to “bring-up” the ADCS board. Board bring-up involves writing firmware or code specific to the 

hardware of both the processor and the board’s peripherals: pins, communication buses, 

clocks, etc. All the hardware specific code needed to be abstracted from the application level; 

in other words, application designers should never be able to reference hardware specific 

code. The reference manual [11] for the ADCS MCU contains all the memory addresses for the 

control registers, control bit offsets in the registers, peripheral buses, and clock tree circuit 

(Appendix F. 1 and F.2). All memory addresses, offsets, and control flags needed for our 

application were defined in device driver header files only to be referenced by driver source 

code (Appendix G). Abstracting all the device specific addresses and flags allow future 

WinSAT teams the flexibility to use any MCU from the STM family of boards by simply 

updating the device specific addresses in the MCU driver header file to the MCU of their 

choice. 

4.2.4.2 I2C Driver 

I2C (Inter-Integrated Circuit) or two-wire protocol was chosen for the main communication 

protocol between physical devices in the CubeSat. Subsystem design is very easy using this 

protocol as only two wires are needed - SDA (serial data line) and SCL (serial clock line). The 

OBC is running KubOS Linux and the ADCS controller is running Mbed OS (Arm’s embedded 

OS [12]). 



   
 

   
 

The following figure shows the configuration of the ADCS subsystem: 

 

Figure 11 - CDH I2C Diagram for ADCS controller. 

 

The STM32-F446RE is the ADCS MCU, the Pumpkin MBM 2 contains the OBC, and the NXP 

9Dof is an IMU sensor on the I2C bus with the ADCS controller as master. 

The ADCS MCU has SDA-1 and SCL-1 configured as slave with the OBC as master. It is over 

this connection that the OBC will send commands to the ADCS system and can retrieve 

telemetry data from the subsystem. The OBC is communicating on a driver level giving it the 

ability to trigger reset interrupts if the system needs to be refreshed or rebooted in low power 

mode.  

The SDA-2 and SCL-2 are configured as master on the ADCS controller with the NXP 

gyroscope sensor connected as slave. Notice how this bus extends past the sensor to indicate 

that this design is scalable where future WinSAT teams can add more I2C slave devices on 

this bus with the ADCS MCU as I2C master. With I2C clock stretching, the ADCS master 

servicing all the slave devices are scheduled on a hardware level. This simplicity of design 

saved a lot of development time as OS processes and thread didn’t need to be written to 

schedule the communication of all these devices. Clock stretching is done by simply holding 

the SCL low signaling that the device is busy and to wait to begin serial transmission of data. 



   
 

   
 

The resistors Rp1 and Rp2 (two of each respectively) are pull-up resistors to “pull-up” voltage 

of SCL and SDA to the logic voltage of +3.3V (Appendix F. 3). Pull-up resistors are needed 

due to parasitic capacitance of the PCB and bus material causing a rise time of the voltage that 

doesn’t hit the logic level in some cases (pull up resistors prevent this). The parasitic 

capacitance is shown by Cpd and Cpc for the capacitance of the data and clock bus 

respectively. (Appendix F. 3) 

4.2.4.3 GPIO Driver 

The ADCS MCU has multiple I2C peripherals on the APB1 (advanced peripheral bus). The 

scalability of this project is important for future WinSAT teams so instead of hard coding pins to 

access the I2C peripherals on APB1; the GPIO driver was written to configure the pins as I2C 

pins while providing macros to configure the GPIO pins for other communication protocols. 

Refer to Appendix F-3 for the GPIO configuration used for I2C pins and Appendix G for driver 

header files. 

4.2.5 Hardware 

After the software framework, KubOS Linux, was selected for the onboard satellite computer, 

there were limited options in terms of board selection and board compatibility with KubOS 

Linux. KubOS Linux is a relatively new Linux distribution with a relatively limited set of 

compatible boards, but the benefits of using KubOS Linux, including reduced development 

time, higher-level development, and the ease of use of Linux, all outweighed the negatives of 

using the framework, one of which was the limited board selection.  

The team selected the Pumpkin MBM2 as the onboard computer. The major reason for this 

decision was its compatibility with the BBB development board. The MBM2 is shown in the 

below figure. 



   
 

   
 

 

Figure 12 - Pumpkin MBM2 [13]. 

The MBM2 houses the BBB on top of the motherboard and provides further interfacing 

functionality and other critical services that the BBB does not on its own contain, such as an 

RTC. This would allow the team to do all of the main software development and testing on BBB 

and then be only required to do simple integration of the MBM2 when the final flight model is 

built. 

More information about the MBM2 can be found in the datasheet [14]. 

4.3 Radio 

[Pierre] 

Simulating both satellite orbital paths and generating graphical data to verify the 

capabilities of our proposed RF system required the following process. The creation of a link 

budget was critical to consider and include for antenna simulations. Upon having calculated 

and included all constraints, a final uplink and downlink margin was generated for the ISS and 

Sun-Synchronous orbits. These constraints and other parameters would represent the worst-

case scenario (threshold) whereby the transmission and reception of our frequencies would be 

at its least favorable.  

Consequently, simulating both satellite orbital paths, generating graphical data, and 

verifying the capabilities of our proposed RF system yielded the necessary proof to finalize our 

design. The first step was to create the antennas and their respective radiation patterns were 

created for our chosen Yagi-Uda ground station antennas and for our dipole satellite antennas. 



   
 

   
 

Using the antenna designer application tool within MATLAB, the script could be written to 

define antenna properties such as frequency, load impedance and directional range. The final 

generated antenna would be created at the appropriate length and posses the defined 

characteristics. Refer to Appendix J for all radiation pattern MATLAB code. 

 

Figure 13 - Satellite Dipole Antenna Radiation Pattern (left) and Ground Station Yagi-Uda Radiation Pattern (right). 

Once these antenna radiation patterns were generated, a second script file was written 

to properly convert radiation patterns into phi, theta, gain vectors that could be imported into 

the Systems Tool Kit software for communication link simulations. Now that the radiation 

patterns were input into STK, testing could begin regarding the dipole antenna orientation on 

the satellite. To evaluate the various angles at which the antennas must communicate during 

orbit, three basic orientations were simulated by sending and receiving data. Attempting to find 

the optimal orientation, the perpendicular receiving and transmitting dipole antennas were 

oriented horizontally, vertically and at a 45-degree angle to compare their results. In addition, 

all constraints were added such as the link margin threshold from the link budget, uplink and 

downlink communication rates, bandwidth, minimum elevation angle, system noise 

temperature, LNA gain and loss, transmission power and simulation time. To ensure 

consistency, all three scenarios were tested for both orbital paths with the ground station 

tracking and pointing towards the satellite.  



   
 

   
 

 

Figure 14 - Horizontal Transmitting Radiation Pattern (Left) 45 deg. Transmitting 

             

 

 

Figure 15 - Vertical transmitting Radiation Pattern (left) and  Ground Station Radiation Pattern (right). 

 

As can be seen from the ground station figure, STK uses Bing maps to properly 

illustrate ground scenery. In hopes of one day building a ground station on University of 

Windsor campus, simulations were conducted with the ground station located on the green 

roof of the Center for Engineering Innovation building.  

 

 

 



   
 

   
 

5 Physical Implementation/Simulation Development  

5.1 Payload 

[Jon] 

The WinSAT CubeSat payload was simulated using a model generated in AGI STK, a satellite 

software simulation environment. The camera and lens parameters for the both the primary 

and secondary payloads were verified and tested in simulation to ensure that mission 

requirements were met and to observe access and coverage statistics of the payloads 

respectively. This would allow for allow for verifying how often the payload imagers could 

access certain locations and how long coverage of certain areas and countries could be 

retrieved for viewing.  

5.1.1 Primary Payload Access Statistics  

The following is a description of the access that the satellite primary payload sensor would 

have to singular cities or places on Earth, simulated with AGI STK software. This is a 

calculation of the amount of time that the satellite’s sensor, or in this case a camera, can 

observe the place or city. Additionally, for these targeted access statistics, the satellite would 

be enabled to move +25 and -25 degrees off-nadir cross-track according to the CSDC 

requirements [1]. 

The following simulation results and access statistics were run assuming an sun-synchronous 

orbit of equator crossing time of 10:30:00 UTC, a 400 km altitude, and the sensor optics 

calculated and described in the previous sections. 

Table 1 - Access statistics of primary payload in sun synchronous orbit at 400 km altitude over 1 year. 

 

Sample images from the AGI STK simulation software that demonstrate the satellite accessing 

these locations can be found in Appendix C. 

Access Statistics Iqaluit Windsor Manaus

Min Duration (s) 8.982 8.825 8.542

Max Duration (s) 9.92 9.672 9.412

Mean Duration (s) 9.441 9.249 8.97

Total Duration (s) 623.121 342.2 260.143

Number of Accesses 66 37 29

Mean Accesses per Month 5.5 3.08 2.42



   
 

   
 

5.1.2 Secondary Payload – US Case Study 

Area coverage of the secondary payload on the satellite was simulated with AGI STK software. 

To gain an estimate on feasibility, analysis was completed for national coverage to observe 

coverage statistics and behaviour. The results and comments on this analysis and its results 

are described in this section. The eventual goal is to downlink the coverage images, perform 

filtering and stitching, and then provide an online resource or API for users to access these 

images for remote sensing analysis or algorithm development and other big data projects 

where coverage images are needed. 

Calculations were done to verify the amount of coverage in an area and the amount of data 

and what rate it would be produced by the satellite while attempting coverage of the US. The 

results are shown in area coverage analysis results in Appendix C. 

The amount of data being produced by the secondary payload imager to complete the fastest 

coverage of the US is considerable. Being a secondary mission objective, coverage images 

are of a much lower priority than the “Space-Selfie” images and other critical command, data, 

and telemetry. As a result, the team may need to reduce the amount of coverage data being 

downlinked to the ground station, which will result in a longer time to provide full coverage of 

countries and other large areas, like the US.  

ISS Orbit 

Images can be found in the appendix that demonstrate the coverage analysis of the US for the 

secondary payload sensor, assuming the specifications specified in the above design 

description. These calculations assume that the satellite is at 400km altitude and is in ISS orbit. 

An example image of coverage over 3 days is shown below. 

 



   
 

   
 

 

Figure 16 - Secondary payload US coverage over 3 days assuming ISS orbit. 

 

More of these coverage images for different periods of time can be found in Appendix C. 

Additionally, the graph below provides the percent coverage of the US provided by the satellite 

over time. 

 

Figure 17 - Secondary payload US percent coverage over time in ISS orbit. 

 

Sun-Synchronous Orbit 

Images can be found in the appendix that demonstrate the coverage analysis of the United 

States for the secondary payload sensor, assuming the specifications specified in the above 

design description. These calculations assume that the satellite is at 400km altitude and is in 

ISS orbit. 



   
 

   
 

The graph summarizes these results by providing the percent coverage of the US provided by 

the satellite over time. 

 

Figure 18 - Secondary payload US percent coverage over time in Sun-Synchronous orbit. 

 

5.2 CDH 

[Jon] 

To test and validate the software design of the onboard computer or command and data 

module, a “FlatSat” setup was built and is shown in the below figure. 

 

Figure 19 - "Flat-Sat" software integration testing. 



   
 

   
 

This setup includes COTS replacements for all the major components that would be present in 

the flight model of the satellite. This allowed for demonstration and testing of the software 

design on the main onboard computer and its functionality and interfacing with other 

subsystems. 

5.2.1 ADCS 

[Adam] 

Figure 22 shows the testing of the STM32 board bring-up using STM32CubeIDE [15] and 

testing I2C1 and I2C2 peripherals as slave and master respectively. One Arduino acting as 

slave (right) and the other as master (left) connected to different I2C peripheral buses in the 

STM32 board one configured as master (for right Arduino) and the other I2C bus as slave (to 

the left Arduino). 

Figure 23 shows the STM32 board bring-up using STM32duino [16] imported in the Arduino 

IDE. The NXP 9DoF gyroscope communicated as an I2C slave to visualise the orientation of a 

model of the CubeSat provided by the structural team. Refer to Appendix L for the orientation 

software. 

 

Figure 20 - ADCS controller comms test 

Figure 21 - ACDS controller IMU read test 

5.3 Radio 

[Pierre] 

Considering the simulation results, the antenna deployment mechanism could be 

designed based on the chosen orientation. The radio frequency division worked alongside the 



   
 

   
 

structural team to complete a basic antenna deployment system whereby the antennas would 

be coiled into the structure. The C brackets provide the appropriate shape for the antennas to 

coil but present certain challenges as they consume a large amount of the PCB surface area. 

Upon considering the placement of the two baluns for each dipole antenna, it was important 

that they be placed on the PCB in such a fashion that the coaxial cables connecting them to 

the antennas and the transceiver would have easy accessibility. The view of the modeled 

design seen below does not include the top plate that encloses this structure. Taking this into 

account, the routes of the coaxial cables are limited by the space between the PCB (green 

plate) and the top plate of the antenna release mechanism. In addition, the coaxial cables 

would have to go around the C brackets which finally led to the decision that the baluns should 

be located directly in between the C brackets thus only requiring one of the coaxial cables to 

pass in between the C bracket. Finally, the center hole would provide the necessary access for 

the coaxial cables to connect the balun to the transceiver.  

 

Figure 22 - Antenna Deployment System 

Within very close proximity to the balun, U. FL surface mount male connector jacks would be 

soldered onto the PCB with traces connecting them to the balun. Coaxial cables with female 

U.FL connectors could then connect the balun circuit to the dipole antennas and to the 

transceiver. The following figure represents the connectivity of all these components. 



   
 

   
 

 

Figure 23 - Balun Connections 

Considering this architecture, between any one of these connections or transmissions there is 

a possibility for the signal to lose its integrity as well as impedance mismatch. Refer to 

Appendix K for proper clarifications on this terminology. As the connectors, coaxial cables and 

baluns are components that have been specifically designed for radio frequencies, they could 

be trusted with relative confidence. However, the PCB substrate that connect the U.FL 

connectors to the balun should use the appropriate materials, thickness and manufacturing to 

ensure the proper signal transmission for both the receiving and transmitting frequencies. 

Assessing these possible trace characteristics was conducted through Advanced Design 

System and EMPro from Keysight technologies. Using an existing balun design in the ADS 

environment, different substrates could be tested at both 144MHz and 437 MHz frequencies. 

Here is a basic three-layer substrate that was tested with two dielectric layers, one conductor, 

a top cover, and a bottom cover.  

 

Figure 24 - Substrate Example 

Upon specifying the substrate layers in ADS, the balun circuit could be imported into EMPro 

and simulated for both frequencies. Results would define radiation efficiency, reflection 



   
 

   
 

coefficient and voltage standing wave ratio amongst other things. Trace curvature was 

implemented to fully evaluate the capabilities of each substrate and expose weaknesses. 

 

Figure 25 - EMPro Balun Design 

Future work for this project will include further testing using this model for various substrate 

materials and thicknesses. Once sufficient data has been collected, the PCB design will be 

finalized and sent to be manufactured.  

 

 

 

 

 

 

 

 

 

 



   
 

   
 

6 Experimental Methods/Model Validation 

6.1 Software Integration Testing 

With the implementation of the “Flat-Sat”, the team performed software unit testing on 

individuals subsystems of the satellite as well as integration testing with all of the satellite 

components interfaced together. Mock software models were created to simulate other 

subsystems of the  

6.2 Ground Station Operator and Satellite Image Viewing 

To test the satellite image captures and transfers, the team used the KubOS ground station 

software to communicate with the satellite as if it was in orbit. This ground station software was 

used to command the “Flat-Sat” model to take coverage images. For testing, the team used 

sample images from other satellites, placed them on the payload module, and then downlinked 

those images to ground station through the radio. Then, the coverage images were modified 

and stitched together and then uploaded to web application that provides access to viewing 

these images through a public link: https://winsat.ca/payload 

The image below is a snapshot of what the ground station operator may see while the satellite 

is in orbit. Both the coverage images from the web application and the ground station operator 

form KubOS are shown. 

 

Figure 26 - KubOS ground station operator and WinSAT web application for satellite imagery viewing. 

https://winsat.ca/payload


   
 

   
 

6.3 Radio Antenna Deployment  

To facilitate deployment, the antennas were designed to be fastened to spring loaded 

armatures that would only release the antennas once the holding wire was burnt. In outer 

space, materials have certain out gassing properties which limit the types of materials that can 

be used. Original designs included a nichrome wire tied to the spring-loaded armature which 

then was wrapped around a wire wound resistor that would heat up and burn the wire to 

release the spring-loaded armatures thus releasing the antennas. Multiple gauges of nichrome 

wire and different value resistors were used to burn the wire as fast as possible and with the 

least amount of voltage. Various tests exposed the difficulty of burning the nichrome wire and 

the large resistors needed to do so. After some revision, a better method was proposed which 

would use the nichrome wire as a resistive element and a nylon fishing wire would be used to 

hold the spring-loaded armature. A contact switch would then apply a voltage to the nichrome 

wire for the required time needed for the nichrome wire to burn the fishing line and release the 

spring-loaded doors. Testing different nichrome wire gauges provided different burn times for 

10lbs test fishing line.  

 

 

 

 

 

 

 

 

 

 



   
 

   
 

7 Design Specifications and Evaluation Matrix  

7.1 CDH 

[Adam] 

I2C Communication Frequency 

Standard I2C mode is at 100KHz communication; the standard configuration uses an RC 

(resistor capacitor) circuit on the evaluation board (HSI – high speed internal[11]) at 16MHz to 

drive the peripheral bus. [11] 

Anything greater than 100KHz is considered FMPI2C (fast mode plus I2C) where the data and 

clock lines can go up to 400KHz. An external crystal oscillator (HSE – high speed external) is 

on the breakout board the runs at 26MHz to drive the peripheral bus. [11] 

Refer to Appendix F.2 for clock tree to go from HSI or HSE to APB1 where I2C peripherals are. 

Pull-Up Resistors 

In Figure 11 there is shown to be two different Vcc sources and pull-up resistor values. The 

physical build shown in Figure 16 uses the STM32’s internal pull-up resistors that is soldered 

on the breakout board. Therefore, the build also uses voltage from the STM32 board for Vcc1 

and Vcc2. 

The GPIO pin configuration has been set so that the internal pull-up resistor is an option. 

Future WinSAT teams will be adding more devices on the STM32 I2C2 bus which adds more 

parasitic capacitance. At some point there may be too many devices for the internal pull-up 

resistor to be enough to hit the voltage logic threshold. In this case, an external pull-up resistor 

must be used for this bus and Vcc2 will be supplied by the EPS module of the CubeSat. 

The maximum allowed bus capacitance is 400pF but Fast Mode Plus I2C (FMPI2C) allows 

550pF. The maximum allowed rise time for the SDA and SCL is 1000ns or 120ns for FMPI2C. 

[17]. Refer to Appendix F. 3 for pull-up resistor equation and GPIO configuration for I2C pins. 

7.2 Radio 

[Pierre] 

Link Budgets 



   
 

   
 

When considering radio frequency link margins over long distance, there are several 

variables that can improve or degrade transmission and reception. These constraints were 

input into link budget excel spread sheets and compiled to produce a final link margin. Primary 

values input into the link budgets consisted of the total rf power delivered to the antenna, 

system noise temperature, antenna gain, pointing losses, antenna polarization losses, 

atmospheric and ionospheric losses as well as the modulation and demodulation method. In 

addition, values were determined for the losses attributed to cables types, lengths, 

connections, as well as the signal balancing balun insertion loss. The antenna gains and 

pointing losses were dependent on the antenna type, length, and frequency. Regarding 

atmospheric and ionospheric losses, the parameters considered were the minimum elevation 

angle value along with the uplink and downlink frequencies as they define the distance the 

signal must travel through and the effect that the ionosphere and atmosphere have on signals 

at certain frequencies. Specific to the uplink budget, antenna/noise temperatures, spacecraft 

temperature and the low noise amplifier gain and temperature were considered.  

Ultimately, the uplink and downlink budgets for both the Sun-Synchronous and ISS 

orbits were calculated and used to evaluate the chosen/designed satellite transceiver, ground 

station and antennas. The link budgets generated respective uplink and downlink link margins 

defining overall performance with one final value in decibels.  All tabulated parameters and 

final link margins can be found in Appendix D. 

Based on the RF Link Budget, the final ground station and satellite properties were calculated. 

These values would later be used in STK orbital simulations.  

Table 2 - Ground Station Parameters 

Ground 

Station 

Parameters 

Power Link Margin 

Threshold 

Bandwidth Data 

Rate 

Modulator/ 

Demodulator 

Antenna 

to LNA 

Line 

Loss 

System 

Noise 

Temp. 

LNA 

Gain 

LNA to 

Receiver 

Line Loss 

Receiver 

Values 

N/A 6.8 dB N/A N/A FSK 3.3 dB 724 

Kelvin 

23.5 

dB 

2.3 dB 

Transmitter 

Values 

4.36 W N/A 0.0192 

MHz 

1200 

bps 

FSK N/A N/A N/A N/A 



   
 

   
 

 

Table 3 - Satellite Parameters 

Satellite 

Parameters 

Power Link Margin 

Threshold 

Bandwidth Data 

Rate 

Modulator/ 

Demodulator 

Antenna 

to LNA 

Line 

Loss 

System 

Noise 

Temp. 

LNA 

Gain 

LNA to 

Receiver 

Line Loss 

Receiver 

Values 

N/A 31 dB N/A N/A FSK 1 dB 510 

Kelvin 

20 dB N/A 

Transmitter 

Values 

-0.73 W N/A 0.0192 

MHz 

9600

bps 

FSK N/A N/A N/A N/A 

 

Based on the different antenna orientation patterns, various performance characteristics could 

be assessed for both the ISS and Sun-Synchronous orbits. Scenario times were conducted 

over several months to ensure that all possible communication link permutations were 

considered. Plotting the link margins and bit error rates against all elevation angles provided 

graphical results for all three antenna orientations. All antenna orientations provided a very low 

bit error rate which meant that the link margin values would determine the chosen 

configuration. It is important to note that for all transmitting antenna orientations tested, the 

receiving antenna was oriented perpendicularly. The vertical transmitting orientation provided 

most of its link margins within a relatively good link margin. The 45-degree transmitting 

orientation provided very inconsistent link margins. Finally, the horizontal transmitting 

orientation provided consistent link margins at high values. Comparing the results for both 

orbits provided sufficient evidence to conclude that a horizontal transmitting radiation pattern 

would provide optimal performance. Refer to Appendix E for graphical results. 

Referring to the antenna deployment described in the Experimental Methods/Model Validation 

section, the following table lists the different burn times for 10lbs test fishing line from various 

nichrome wire gauges.   

 

 



   
 

   
 

Table 4 - Fishing Line Burn Time Test Results 

 

Considering both the voltage drop and melting time, the 34-gauge nichrome wire was selected 

as the most practical option. Although the 36-gauge wire would theoretically provide a faster 

melting time, the applied voltage would melt the thin nichrome wire. Other voltages were not 

considered as the onboard EPS module only supports 3.3V and 5V. 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

8 Budget 

[Pierre] 

The finalized budget accounts for all subsystem components that our team has developed over 

the course of this project. Component prices are listed as the proposed designs have all been 

finalized. Previous WINSAT funding will be used for larger expenses as future members 

choose to continue this project. Currently, most components have been purchased but have 

not been used for physical construction as Covid-19 has made this process unfeasible.  

Table 5 - Tabulated Budget 

Components Quantity Unit Price 

(CAD) 

Subtotal (CAD) Tax (HST) 

(Estimated) 

Total (CAD) 

Astrodev Helium 100 

UHF/VHF Transceiver       

1 $6697.22 $6697.22 $870.64 $7567.86 

U.FL (UMCC) 

Connector Jack, Male 

Pin 50Ohm Surface 

Mount Solder     

6 $0.72 $4.32 $0.65 $4.97 

Cable Assembly 

Coaxial U.FL (UMCC) 

1.37mm OD Coaxial 

Cable 7.874" 

(200.00mm)                 

4 $3.35 $13.4 $1.75 $15.15 

RF Balun - 50/50 Ohm, 

100MHz ~ 1GHz IL     

1.0dB         

2 $1.88 $3.76 $0.48 $4.24 

Nichrome 80 Wire 

Sample Pack 

22,24,26,28,30,32,34,3

6 Gauge       

1 $35.2 $35.2 $4.58 $39.78 



   
 

   
 

RF Deployment - 

Antenna Release 

Switches         

4 $3.8 $15.2 $2 $17.2 

Pumpkin Motherboard 

Module 2 (MBM2) 

1 $7354.49 $7354.49 $956.08 $8310.57 

Raspberry Pi Compute 

Stick 

1 $132.64 $132.64 $17.24 $149.88 

Arducam 2MP Mini 

Plus Camera Module 

2 $38.29 $76.58 $9.96 $86.53 

Edmunds 6mm Lens 1 $76.52 $76.52 $9.95 $86.47 

Edmunds 16mm Lens 1 $49.50 $49.50 $6.44 $55.94 

STM32-F446RE 1 $22.00 $22.00 $2.79 $24.79 

NXP 9-DOF 1 $23.99 $23.99 $3.12 $27.11 

 

The budget is within what was set during the initial design phase and initial rounds of funding 

and fits within the WinSAT team budget. 

 

 

 

 

 

 

 



   
 

   
 

9 Conclusions  

The team was able to design, develop, build, and test three subsystems onboard the WinSAT 

CubeSat satellite – Payload, CDH, and RF. Using both physical implementations as well as 

simulation models (when a physical model was unachievable), the design for the subsystems 

was verified according to the original CSDC competition guidelines [1]. 

With the design of the Payload subsystem, it has been verified through satellite simulation the 

optical design and parameters and software implementation are able to meet the mission 

requirements with regard to imaging. The primary payload optical design allows for the 

acquisition of a single image, covering between an area of 40kmx40km and 100kmx100km as 

specified in the design requirements. 

The CDH subsystem has been developed and designed to provide successful communication 

between all subsystems on the satellite. The software design was tested using the “Flat-Sat” 

bench setup, including integration with other subsystems. The satellite is able to retrieve and 

execute both immediate and time-tagged commands from ground station. As well, the satellite 

successfully time-tags all onboard telemetry and then is able to downlink those to the ground 

station within a 12-hour period.  

Altogether, the RF communications link satisfies the required guidelines defined by the CSDS. 

Using the 9600-bps downlink and 1200-bps uplink data rates, antenna selection, design and 

basic physical construction was finalized. The required 6 dB link margin at minimum 10º 

elevation angle was verified within the link budget and orbital simulations.  

All of this combined work contributes to completing and fulfilling the main mission goal of 

WinSAT satellite – complete the concept of operations for acquiring a single “Selfie-Sat” image 

when commanded by an ARO. The design for the RF, CDH, and Payload subsystems meets 

the design requirements and has been verified to adequately facilitate the main mission goal.  

 

 
 
 



   
 

   
 

10 References 

[1] C. Satellite and D. Challenge, “The Canadian Satellite Design Challenge General Rules & 

Requirements,” no. 3, 2014. 

[2] D. J. F. Miranda, M. Ferreira, F. Kucinskis, and D. McComas, “A comparative survey on flight 

software frameworks for ‘new space’ nanosatellite missions,” J. Aerosp. Technol. Manag., vol. 

11, 2019, doi: 10.5028/jatm.v11.1081. 

[3] B. Dunbar and Y. Kovo, “Command and Data Handling | NASA,” National Aeronautics and 

Space Administration, 2020. https://www.nasa.gov/smallsat-institute/sst-soa/command-and-data-

handling (accessed Aug. 07, 2020). 

[4] M. Lankinen and E. Kallio, “Design and Testing of Antenna Deployment System for Aalto-1 

Satellite Title: Design and Testing of Antenna Deployment System for Aalto-1 Satellite,” 2015. 

[5] S. B. M. Zaki, M. H. Azami, T. Yamauchi, S. Kim, H. Masui, and M. Cho, “Design, Analysis and 

Testing of Monopole Antenna Deployment Mechanism for BIRDS-2 CubeSat Applications,” J. 

Phys. Conf. Ser., vol. 1152, no. 1, 2019, doi: 10.1088/1742-6596/1152/1/012007. 

[6] S. Marholm, “Antenna Systems for NUTS,” no. July 2012, 2012. 

[7] Z. J. Leffke, R. W. Mcgwier, D. G. Sweeney, and S. S. Bailey, “Distributed Ground Station 

Network For CubeSat Communications,” 2013. 

[8] C. B. Crail and M. Herson, “Ranking CubeSat Communication Systems Using a Value-centric 

Framework,” 2007. 

[9] Arducam, ArduCAM-M-2MP Camera Shield 2MP SPI Camera User Guide. 2015. 

[10] Kubos Corporation, “Kubos Documentation,” 2020. https://docs.kubos.com/1.21.0/index.html 

(accessed Aug. 05, 2020). 

[11] “RM0390 Reference manual STM32F446xx advanced Arm ®-based 32-bit MCUs For 

information on the Arm ® Cortex ®-M4 with FPU core, refer to the Cortex ®-M4 Technical 

Reference Manual. For information on the Cortex ®-M4 with FPU, refer to the 

STM32F3xx/F4xxx Cortex ®-M4 with FPU programming manual (PM0214),” 2018. [Online]. 

Available: www.st.com: 



   
 

   
 

[12] “Mbed OS | Mbed.” https://os.mbed.com/mbed-os/ (accessed Aug. 07, 2020). 

[13] “CubeSat KitTM Motherboard Module (MBM) 2,” vol. 2, no. March. Pumpkin, pp. 1–23, 2019, 

[Online]. Available: http://www.pumpkininc.com/space/datasheet/710-01362-

E_DS_MBM_2.pdf. 

[14] “STM32 IDEs - STMicroelectronics.” https://www.st.com/en/development-tools/stm32-ides.html 

(accessed Aug. 07, 2020). 

[15] “STM32duino.” https://github.com/stm32duino (accessed Aug. 07, 2020). 

[16] N. Semiconductors, “UM10204 I 2 C-bus specification and user manual Rev. 6-4 April 2014 User 

manual Document information Info Content.” [Online]. Available: http://www.nxp.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

11 Appendices  

APPENDIX A 

Payload Optical, Orbital, and Sensor Viewing Parameters Calculations 

A-1 Orbital Parameters 

The following figure is a visual of some of the orbital and sensor viewing parameters that will be 

calculated that supplements the calculations for better understanding. 

Assuming orbital altitude of H=400km and the radius of the Earth Re=6378.14km, calculate the orbital 

period (P): 

  

  

Compute the ground track velocity (Vg): 

  

 

 

Compute the node shift (L) or the change in the angular position of each consecutive orbit: 

   

 

 

 

 

 



   
 

   
 

A-2  Sensor Viewing Parameters 

Assuming a maximum off-nadir angle (n) of 25 degrees or 0.4363 rad as specified in the competition 

rules: 

Compute the earth angular radius (p) as seen and observed from the satellite: 

  

  

rad 

Compute the maximum distance to the horizon from the satellite (Dmax): 

  

  

  

Compute the minimum elevation angle (e), the angle between the ground and the satellite from the target 

location. This is the elevation angle at maximum off nadir angle of 25 deg. 

  

 

 e = 1.11 rad 

Compute the max incidence angle (IA) or incidence angle at maximum off nadir angle of 25 deg: 

  

 

  



   
 

   
 

Computer maximum earth central angle () or earth central angle at max off nadir angle: 

  

 

Finally, compute the slant range (Rs) or the distance from the satellite to the earth’s surface at the 

maximum nadir angle (n): 

  

 

 

A-3. Sensor Optics 

Assuming a detector width of d=2.2um (from camera specifications), calculate the required focal length 
to meet the spatial resolution of 40m at 400km altitude: 

 

 

 

Assume a lens of focal length of 22mm. 

Calculate field of view, image coverage, and spatial resolution when using a 22mm lens and the 
OV2640 camera chip: 

 

 

 



   
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

A-3 Payload optical tables and figures. 

Table A. 1 - Arducam Mini Camera Module Specifications [9]. 

 

 

Figure A. 1 - ArduCam Mini Shield Block Diagram [9]. 

Table A. 2 - Lens comparison on OV2640 image sensor for single-point “Space-Selfie” image acquisition primary objective. 

 

 

 

 

 

 

 

Resolution 1600 x 1200

Shutter Rolling Shutter

Lens 1/4"

Pixel Size 2.2um x 2.2um

SPI Speed 8MHz

Frame Buffer Size 384KB

Temperature (-10C to 55C)

Power Normal: 5V/70mA | Low Power: 5V/20mA

ArduCAM Mini Camera Module Shield w/ 2MP OV2640

Focal Length Field of View Best Spatial Resolution (nadir) Image Coverage (nadir) Worst Spatial Resolution (25 degrees off nadir)Image Coverage (25 degrees off nadir)

14mm 14.33 deg x 10.7 deg 62.9m/pixel 100.3 km x 75.3 km 78.2m/pixel x 69.8m/pixel 125 km x 83.8 km

16mm 12.5546 deg x 9.4324 deg 55m/pixel 88.0000 km x 66.0000 km 68.3m/pixel x 61.1m/pixel 109 km x 73.3 km

18mm 11.1690 deg x  8.3884 deg 48.8889 m/pixel 78.222 km x 58.667 km 60.8m/pixel x 54.3m/pixel 97.3 km x 65.2 km

20mm 10.0581 deg x 7.5521 deg 44m/pixel 70.399 km x 52.800 km 54.7m/pixel x 48.8m/pixel 87.5 km x 58.6 km

22mm 9.14 deg x 6.86 deg 40m/pixel 63.9 km x 48.0 km 49.7m/pixel x 44.4m/pixel 79.5 km x 53.3 km

24mm 8.39 deg x 6.29 deg 36.7m/pixel 58.6 km x 44.0km 45.6m/pixel x 40.7m/pixel 73.0 km x 48.8 km

26mm 7.75 deg x 5.81 deg 33.8m/pixel 54.1 km x 40.6 km 42.0m/pixel x 37.5m/pixel 67.2 km x 45.0 km

Sensor Optics



   
 

   
 

Table A. 3 - Primary payload optical sensor parameters with selected 16 mm lens. 

 

Table A. 4 - Lens comparison on OV2640 image sensor for secondary area/global coverage objective. 

 

Table A. 5 - Secondary payload optical sensor parameters with selected 6 mm lens. 

 

 

 

 

 

 

Focal Length Field of View Spatial Resolution Image Coverage Image Capture Rate (sec/image) Data Rate (Arducam JPEG)

2mm 82.70 deg x 62.02 deg 440m/pixel 704.06 km x 528.04 km 73.176 7871.4 B/sec

4mm 47.50 deg x 35.62 deg 220m/pixel 352.01 km x 264.01 km 36.587 15743 B/sec

6mm 32.70 deg x 24.52 deg 146.667m/pixel 234.69 km x 176.02 km 24.393 23613 B/sec

8mm 24.81 deg x 18.61 deg 110m/pixel 175.96 km x 131.97 km 18.289 31494 B/sec

10mm 19.96 deg x 14.97 deg 88m/pixel 140.77 km x 105.58 km 14.631 39368 B/sec

12mm 16.69 deg x 12.52 deg 73.3m/pixel 117.35 km x 88.01 km 12.197 47224 B/sec

Sensor Optics



   
 

   
 

APPENDIX B 

Optical Sensor Comparison 

Table B. 1 - Comparison of camera modules for optical payload selection. 

 Xcam ov2640 e-

CAM20_CU

0230_MOD 

C329-

SPI 

AR0135AT NOIS1SM10

00A 

UCAM-III 

Sensor 1.3 MP 

CMOS 

CMOS 2 MP CMOS CMOS 1.2 MP CMOS CMOS CMOS 

Resolution 1280x1024 1600x1200 1920x1080 640x480 1280x960 1024x1024 656x496 

Focal Length 9.6mm  6.72mm     

Sensor size  1/4"    1"  

Lens  s-mount various various DFM 

27UR0135-ML 

(Camera and 

Sensor) 

Various Various 

Wavelength 

(nm) 

400-650  400-650     

Dimensions 9.5x9.1x2.7  30mmx30m

m 

20x28m

m 

30mmx30mmx1

0mm 

26.8mmx26.8

mm 

32mmx32m

mx21mm 

Mass 85g    15g  ~6g 

Operating 

Temp 

-25><65 -30><70   -40><105 -40><85 -30><85 

Survival 

Temp 

-35><75  -40><105  -40><120  -40><105 

Data Format 8 bit 8, 10 bit 10, 12 bit 8 bit 8,12 bit 10 bit 8,16 bit 

Image 

Compression 

JPEG JPEG RAW JPEG RAW RAW JPEG 

Data 

Interface 

I2C/SPI SCCB/I2C/S

PI 

I2C SPI Parallel Pixel SPI  

Power 

Consumption 

0.845 W 140mW 0.7 W  1.25 W 0.4 W  

Voltage  1.7-3.3V 1.8-2.8V 3.3V 4.75V - 5.25V 5V 5V 

Flight 

Heritage 

Y Y N Y N Y Y 

Data Sheet Xcam Data ov2640 Data eCom Data C329 

Data 

AR0 Data NOIS Data uCAM Data 

http://www.xcam.co.uk/sites/default/files/MKPU-XCAM-MS-00011.pdf
https://www.uctronics.com/download/cam_module/OV2640DS.pdf
https://www.e-consystems.com/2mp-ar0230-hdr-camera-module-for-automotive.asp#key-features
http://www.electronics123.net/amazon/datasheet/C329_SPI_data.pdf
http://www.electronics123.net/amazon/datasheet/C329_SPI_data.pdf
https://www.digchip.com/datasheets/parts/datasheet/343/AR0135-pdf.php
https://www.digchip.com/datasheets/parts/datasheet/343/NOIS1SM1000A-HHC-pdf.php?fbclid=IwAR2qY8NCJLq3TwrQZ6KzlLQFc_Tq1IY8KwSWmdnL6T9IeW58xj78loIiiGA
https://www.digchip.com/datasheets/parts/datasheet/3099/UCAM-III-pdf.php


   
 

   
 

APPENDIX C 

STK Image and Coverage Analysis 

C-1. Ground Track Figures 

 

Figure C. 1 - ISS orbit mission ground track. 

 

Figure C. 2  - Sun Synchronous orbit mission ground track. 

 

 

 



   
 

   
 

C-2. Primary Payload Point Access Analysis 

Primary Payload Access Statistics and Results 

 

Figure C. 3 - Payload Windsor access. 

 

Figure C. 4 - Payload Windsor access. 

 

 

 

 



   
 

   
 

C-3. Secondary Payload Coverage Analysis 

Table C. 1 - Coverage statistics of secondary payload in sun synchronous orbit at 400 km altitude. 

 

 

 

Figure C. 5 - US coverage analysis after 1 day. 

 

Figure C. 6 - US coverage analysis after 3 days. 

US Area 9834000

Average Coverage Area Daily 1871831.657

Coverage per image 41310.1338

Number of images per day 45.31168227

Data per image 576000

Data per day 26099528.99

Data per day (MB) 26.09952899



   
 

   
 

 

Figure C. 7 - US coverage analysis after 7 days. 

 

Figure C. 8 - US coverage analysis after 14 days. 

 

 

 

 

 

 

 

 

 



   
 

   
 

APPENDIX D 

 

 

APPENDIX D. 1 - Uplink Transmitter System (At Ground Station) 

 

APPENDIX D. 2 - Downlink Transmitter System (At Spacecraft) 



   
 

   
 

 

APPENDIX D. 3 - Uplink Receiver System (At Spacecraft) 

 

APPENDIX D. 4 - Downlink Receiver System (At Ground Station) 



   
 

   
 

 

APPENDIX D. 5 - Uplink ISS Orbit (Left) and Downlink ISS Orbit (Right) 

 

APPENDIX D. 6 - Uplink Sun-Synchronous Orbit (Left) and Downlink Sun-Synchronous Orbit (Right) 

 

 

 

 

 

 



   
 

   
 

APPENDIX E 

 

APPENDIX E. 1 - ISS Horizontal Transmitting Radiation Pattern Link Margin & Bit Error Rate vs. Elevation Angle 

 

 

APPENDIX E. 2 - ISS Vertical Transmitting Radiation Pattern Link Margin & Bit Error Rate vs. Elevation Angle 



   
 

   
 

 

APPENDIX E. 3 - ISS 45 deg. Transmitting Radiation Pattern Link Margin & Bit Error Rate vs. Elevation Angle 

 

 

APPENDIX E. 4 - Sun-Sync Horizontal transmitting Radiation Pattern Link Margin & BER vs. Elevation Angle 



   
 

   
 

 

APPENDIX E. 5 - Sun-Sync Vertical transmitting Radiation Pattern Link Margin & BER vs. Elevation Angle 

 

APPENDIX E. 6 - Sun-Sync 45 deg. transmitting Radiation Pattern Link Margin & BER vs. Elevation Angle 

 

 

 

 

 

 

 



   
 

   
 

APPENDIX F 

ADCS Controller – STM32 F446RE 

 

Appendix F. 1 – STM32-F446RE Memory Busses 



   
 

   
 

 

Appendix F. 2 – STM32 F446RE Clock Tree 



   
 

   
 

 

 

Appendix F. 3 - GPIO Alternate Function Configuration 

I2C pins are in open-drain configuration, this means the GPIO is set to alternate function 

mode: 

𝑅𝑝𝑚𝑖𝑛 =  
𝑉𝑐𝑐2 − 𝑉𝑂𝐿(𝑀𝐴𝑋)

𝐼𝑂𝐿
 

“OL” subscripts stand for low-level output for voltage (V) and current (I). 

𝑉𝑂𝐿(𝑀𝐴𝑋) is 0.4V [17] 

𝐼𝑂𝐿 is 3mA [17] 

 

Appendix F. 4 - I2C 7-bit address with ACK timing diagram 



   
 

   
 

 

Appendix F. 5 - I2C 7-bit Slave Send Data 

 

Appendix F. 6 - I2C 7-bit Slave Receive Data 



   
 

   
 

 

Appendix F. 7 - I2C 7-bit Master Send Data 

 

 

Appendix F. 8 - I2C 7-bit Master Receive Data 



   
 

   
 

 

Appendix F. 9 - ARM CORTEX M4 Block Diagram 

 

 

 

 

 

 

 

 



   
 

   
 

APPENDIX G 

ADCS_comms/drivers/Inc/ mcu.h 

   /* 

 

  * mcu.h 

 

  * 

 

  * MCU specific header file for STM32-F446RE 

 

  * 

 

  * Refer to reference manual to see memory, register maps, and control bits: 

 

  *     RM0390 Reference Manual - STM32F446xx advanced ARM-based 32-bit MCUs 

 

  * 

 

 

 

 

  */ 

 

  
  

 #ifndef DRIVERS_INC_MCU_H_ 

 

 #define DRIVERS_INC_MCU_H_ 

 

  
  

 #include <stdint.h> 

 

  
  

 /************* General Macros ***************/ 

 

 #define TRUE  1 

 

 #define FALSE 0 

 

  
  

 /************* AHB/APB Bridges **************/ 

 

  
  

 /* base address of APB1 (Advanced Peripheral Bus) 

 

 * that contains the CPU's I2C registers in it's memory map 



   
 

   
 

 

 */ 

 

 #define APB1 0x40000000U 

 

  
  

 /* base address of AHB1 (Advanced High-performance Bus) 

 

  * that contains the CPU's RCC registers in it's memory map 

 

  */ 

 

 #define AHB1 0x40020000U 

 

 /*******************************************/ 

 

  
  

 /************** Memory Maps ****************/ 

 

  
  

 /* Base address of RCC (Reset and Clock Control) 

 

 * control registers in the CPU memory map 

 

 */ 

 

 #define RCC_ADDR (AHB1 + 0x3800U) 

 

  
  

 /* Base address of GPIO ports on the AHB1 bus 

 

  * that can be configures as I2C pins 

 

  */ 

 

 #define GPIOA_ADDR (AHB1 + 0x0000) 

 

 #define GPIOB_ADDR (AHB1 + 0x0400) 

 

  
  

 /* Base addresses of I2C (Inter-Integrated Circuit) 

 

  * control registers in the CPU memory 

 

  */ 

 

 #define I2C1_ADDR (APB1 + 0x5400U) 

 

 #define I2C2_ADDR (APB1 + 0x5800U) 



   
 

   
 

 

 #define I2C3_ADDR (APB1 + 0x5C00U) 

 

 /*********************************************/ 

 

  
  

 /************** Register Maps ****************/ 

 

  
  

 // RCC register map 

 

 typedef struct { 

 

  volatile uint32_t RCC_CR; 

 

  volatile uint32_t RCC_PLLCFGR; 

 

  volatile uint32_t RCC_CFGR; 

 

  volatile uint32_t RCC_CIR; 

 

  volatile uint32_t RCC_AHB1RSTR; 

 

  volatile uint32_t RCC_AHB2RSTR; 

 

  volatile uint32_t RCC_AHB3RSTR; 

 

  uint32_t Reserved_1C; 

 

  volatile uint32_t RCC_APB1RSTR; 

 

  volatile uint32_t RCC_APB2RSTR; 

 

  uint32_t Reserved_28; 

 

  uint32_t Reserved_2C; 

 

  volatile uint32_t RCC_AHB1ENR; 

 

  volatile uint32_t RCC_AHB2ENR; 

 

  volatile uint32_t RCC_AHB3ENR; 

 

  volatile uint32_t RCC_APB1ENR; // use 

 

  volatile uint32_t RCC_APB2ENR; 

 

  uint32_t Reserved_48; 

 

  uint32_t Reserved_4C; 

 

  volatile uint32_t RCC_AHB1LPENR; 



   
 

   
 

 

  volatile uint32_t RCC_AHB2LPENR; 

 

  volatile uint32_t RCC_AHB3LPENR; 

 

  uint32_t Reserved_5C; 

 

  volatile uint32_t RCC_APB1LPER; 

 

  volatile uint32_t RCC_APB2LPENR; 

 

  uint32_t Reserved_68; 

 

  uint32_t Reserved_6C; 

 

  volatile uint32_t RCC_BDCR; 

 

  volatile uint32_t RCC_CSR; 

 

  uint32_t Reserved_78; 

 

  uint32_t Reserved_7C; 

 

  volatile uint32_t RCC_SSCGR; 

 

  volatile uint32_t RCC_PLLI2SCFGR; 

 

  volatile uint32_t RCC_PLLSAICFGR; 

 

  volatile uint32_t RCC_DCKCFGR; 

 

  volatile uint32_t RCC_CKGATENR; 

 

  volatile uint32_t RCC_DCKCFGR2; 

 

 }RCC_regs_t; 

 

  
  

 // GPIO register map 

 

 typedef struct { 

 

  volatile uint32_t GPIO_MODER; // port mode 

 

  volatile uint32_t GPIO_OTYPER; // port output type 

 

  volatile uint32_t GPIO_OSPEEDR; // port output speed 

 

  volatile uint32_t GPIO_PUPDR; // port pull-up/pull-down 

 

  volatile uint32_t GPIO_IDR; // port input data 

 

  volatile uint32_t GPIO_ODR; // port output data 



   
 

   
 

 

  volatile uint32_t GPIO_BSRR; // port bit set/reset 

 

  volatile uint32_t GPIO_LCKR; // port configuration lock 

 

  volatile uint32_t GPIO_AFRL; // alternate function low 

 

  volatile uint32_t GPIO_AFRH; // alternate function high 

 

 }GPIO_regs_t; 

 

  
  

 // I2C register map 

 

 typedef struct { 

 

  volatile uint32_t CR1; // use 

 

  volatile uint32_t CR2; // use 

 

  volatile uint32_t OAR1; 

 

  volatile uint32_t OAR2; 

 

  volatile uint32_t DR; 

 

  volatile uint32_t SR1; // use 

 

  volatile uint32_t SR2; // use 

 

  volatile uint32_t CCR;  // use 

 

  volatile uint32_t TRISE; 

 

  volatile uint32_t FLTR; 

 

 }I2C_regs_t; 

 

  
  

 /* Register map pointers to register 

 

  * map structures in memory 

 

  */ 

 

 #define RCC   ((RCC_regs_t*)RCC_ADDR) 

 

 #define GPIOA ((GPIO_regs_t*)GPIOA_ADDR) 

 

 #define GPIOB ((GPIO_regs_t*)GPIOB_ADDR) 

 

 #define I2C1  ((I2C_regs_t*)I2C1_ADDR) 



   
 

   
 

 

 #define I2C2  ((I2C_regs_t*)I2C2_ADDR) 

 

 #define I2C3  ((I2C_regs_t*)I2C3_ADDR) 

 

 /*********************************************/ 

 

  
  

 /******** I2C registers bit positions ********/ 

 

  
  

 // I2C_CR1 (control register 1) bit positions 

 

 #define I2C_CR1_PE        0 

 

 #define I2C_CR1_NOSTRETCH 7 

 

 #define I2C_CR1_START     8 

 

 #define I2C_CR1_STOP      9 

 

 #define I2C_CR1_ACK       10 

 

 #define I2C_CR1_SWRST     15 

 

  
  

 // I2C_CR2 bit position 

 

 #define I2C_CR2_FREQ    0 

 

 #define I2C_CR2_ITERREN 8 

 

 #define I2C_CR2_ITEVTEN 9 

 

 #define I2C_CR2_ITBUFEN 10 

 

  
  

 // I2C_OAR1 bit position 

 

 #define I2C_OAR1_RESERVED    14 

 

 #define I2C_OAR1_OFFSET_ADD0 1 

 

  
  

 // I2C_SR1 (status register) bit position 

 

 #define I2C_SR1_SB      0 

 

 #define I2C_SR1_ADDR    1 



   
 

   
 

 

 #define I2C_SR1_BTF     2 

 

 #define I2C_SR1_ADD10   3 

 

 #define I2C_SR1_STOPF   4 

 

 #define I2C_SR1_RXNE    6 

 

 #define I2C_SR1_TXE     7 

 

 #define I2C_SR1_BERR    8 

 

 #define I2C_SR1_ARLO    9 

 

 #define I2C_SR1_AF      10 

 

 #define I2C_SR1_OVR     11 

 

 #define I2C_SR1_TIMEOUT 14 

 

  
  

 // I2C_SR2 bit positions 

 

 #define I2C_SR2_MSL     0 

 

 #define I2C_SR2_BUSY    1 

 

 #define I2C_SR2_TRA     2 

 

 #define I2C_SR2_GENCALL 4 

 

 #define I2C_SR2_DUALF   7 

 

  
  

 // I2C_CCR (clock control register) bit positions 

 

 #define I2C_CCR_CCR  0 

 

 #define I2C_CCR_DUTY 14 

 

 #define I2C_CCR_FS   15 

 

 /*********************************************/ 

 

  
  

 #endif /* DRIVERS_INC_MCU_H_ */ 

  

ADCS_comms/drivers/Inc/rcc.h 



   
 

   
 

 

/*  

 * rcc.h 

  * 

  */ 

  
 

 #ifndef DRIVERS_INC_RCC_H_ 

 #define DRIVERS_INC_RCC_H_ 

  
 

 #include "mcu.h" 

  
 

 /* 

  * Peripheral Clock enable for I2C peripheral on APB1 bus 

  *  - APB1 is default 16MHz here as we use the HSI (High Speed Internal) 

  *    clock, that is the RC (resister capacitor) circuit to generate square wave 

  * 

  *    This is done in macro functions so we don't pass RCC 

  *    memory map through user space 

  */ 

 #define GPIOA_CLK_ENABLE() (RCC->RCC_AHB1ENR |= (1 << 0)) // set GPIOAEN bit 

 #define GPIOB_CLK_ENABLE() (RCC->RCC_AHB1ENR |= (1 << 1)) // set GPIOBEN bit 

  
 

 #define I2C1_CLK_ENABLE() (RCC->RCC_APB1ENR |= (1 << 21)) // set I2C1EN bit 

 #define I2C2_CLK_ENABLE() (RCC->RCC_APB1ENR |= (1 << 22)) // set I2C2EN bit 

 #define I2C3_CLK_ENABLE() (RCC->RCC_APB1ENR |= (1 << 23)) // set I2C3EN bit 

  
 

 uint32_t RCC_PCLK1_get(void); 



   
 

   
 

  
 

 #endif /* DRIVERS_INC_RCC_H_ */ 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADCS_comms/drivers/Inc/i2c.h 

/*  

 * i2c.h  

 *  

 *      i2c driver header file 



   
 

   
 

 

 *  

 *      Author: Adam Al-Khazraji  

 *  

 */  

   

#ifndef DRIVERS_INC_I2C_H_  

#define DRIVERS_INC_I2C_H_  

   

#include "mcu.h"  

   

typedef struct {  

 uint32_t I2C_SCL; // SCL speed or frequency  

 uint8_t I2C_DeviceAddress; // device address on I2C bus  

 uint8_t I2C_ACK; // ACK after every message  

 uint16_t I2C_FM; // Duty Cycle when FM in (Fast Mode)  

}I2C_config_t;  

   

typedef struct {  

 I2C_regs_t* i2c_regs; // i2c register structure  

 I2C_config_t config; // options for i2c comm  

}I2C_control_t;  

   

#define SCL_DEFAULT 100000 // SCL default to 100KHz  

#define SCL_FMPI2C  400000 // Fast Mode Plus I2C is between 100KHz to 400KHz  

   

// ACK control bit is bit 10 of I2C CR1 register  

#define I2C_ACK_ENABLE  1  

#define I2C_ACK_DISABLE 0 // default  

   

// DUTY control bit is bit 14 of I2C CCR register  

#define FMPI2C_DUTY_CYCLE_2     0  

#define FMPI2C_DUTY_CYCLE_16_9  1  

   

/* I2C_SR1 flags*/  

#define I2C_SR1_FLAG_SB      (1 << I2C_SR1_SB)  

#define I2C_SR1_FLAG_ADDR    (1 << I2C_SR1_ADDR)  

#define I2C_SR1_FLAG_BTF     (1 << I2C_SR1_BTF)  

#define I2C_SR1_FLAG_ADD10   (1 << I2C_SR1_ADD10)  

#define I2C_SR1_FLAG_STOPF   (1 << I2C_SR1_STOPF)  

#define I2C_SR1_FLAG_RXNE    (1 << I2C_SR1_RXNE)  

#define I2C_SR1_FLAG_TXE     (1 << I2C_SR1_TXE)  

#define I2C_SR1_FLAG_BERR    (1 << I2C_SR1_BERR)  

#define I2C_SR1_FLAG_ARLO    (1 << I2C_SR1_ARLO)  

#define I2C_SR1_FLAG_AF      (1 << I2C_SR1_AF) 



   
 

   
 

 

#define I2C_SR1_FLAG_OVR     (1 << I2C_SR1_OVR)  

#define I2C_SR1_FLAG_TIMEOUT (1 << I2C_SR1_TIMEOUT)  

   

// I2C peripheral clock setup  

void I2C_CLK_Enable(I2C_regs_t *i2c_regs, uint8_t enable);  

   

void I2C_Init(I2C_control_t *i2c_control);  

void I2C_Close(I2C_regs_t *i2c_regs);  

   

// IRQ - interrupt requests  

void I2C_IRQ_Config(uint8_t IRQ, uint8_t enable);  

void I2C_IRQ_Priority(uint8_t IRQ, uint32_t priority);  

   

void I2C_Enable_Disable(I2C_regs_t *i2c_regs, uint8_t enable);  

uint8_t I2C_GetStatus(I2C_regs_t *i2c_regs, uint32_t flag);  

   

void I2C_Callback(I2C_control_t *i2c_control, uint8_t app_event);  

   

void I2C_MasterSend(I2C_control_t *i2c_control, uint8_t *tx_buf, uint32_t len, uint8_t 

slave_addr);  

   

#endif /* DRIVERS_INC_I2C_H_ */ 

  

 

ADCS_comms/drivers/Inc/gpio.h 

/*  

 * gpio.h  

 *  

 */  

   

#ifndef DRIVERS_INC_GPIO_H_  

#define DRIVERS_INC_GPIO_H_  

   

#include "mcu.h"  

   

typedef struct {  

 uint8_t GPIO_Pin; // pin number  

 uint8_t GPIO_Mode; // can be both interrupt or output based  

 uint8_t GPIO_Speed;  

 uint8_t GPIO_PUPD; // pill up pull down  

 uint8_t GPIO_Output;  

 uint8_t GPIO_AltFunc; 



   
 

   
 

 

}GPIO_config_t;  

   

typedef struct {  

 GPIO_regs_t* gpio_regs;  

 GPIO_config_t config;  

}GPIO_control_t;  

   

// GPIO pins  

#define GPIO_PIN_0  0  

#define GPIO_PIN_1  1  

#define GPIO_PIN_2  2  

#define GPIO_PIN_3  3  

#define GPIO_PIN_4  4  

#define GPIO_PIN_5  5  

#define GPIO_PIN_6  6  

#define GPIO_PIN_7  7  

#define GPIO_PIN_8  8  

#define GPIO_PIN_9  9  

#define GPIO_PIN_10 10  

#define GPIO_PIN_11 11  

#define GPIO_PIN_12 12  

#define GPIO_PIN_13 13  

#define GPIO_PIN_14 14  

#define GPIO_PIN_15 15  

   

// pin modes  

// two lsb of GPIO_MODER (port mode register)  

#define GPIO_MODE_INPUT  0  

#define GPIO_MODE_OUTPUT 1  

#define GPIO_MODE_ALTFUNC  2  

#define GPIO_MODE_ANALOG  3  

   

// pin interrupt modes  

#define GPIO_MODE_IT_FT     4 // falling edge  

#define GPIO_MODE_IT_RT     5 // rising  

#define GPIO_MODE_IT_RFT    6 // rising falling edge  

   

// output type  

// GPIO_OTYPER (port output type register) bits 15:0  

// look at GPIO circuit in reference manual for more information  

#define GPIO_OUTPUT_PP   0 // push-pull register  

#define GPIO_OUTPUT_OD   1 // open drain  

   

// speed 



   
 

   
 

 

// GPIO_OSPEEDR (port output speed register) bits 1:0  

#define GPIO_SPEED_LOW    0  

#define GPIO_SPEED_MEDIUM 1  

#define GPIO_SPEED_FAST   2  

#define GPOI_SPEED_HIGH   3  

   

// pull-up/pull-down resistor  

/*  

 * we use the MCU internal PuPd resistor for this project  

 * Check reference manual for external resistor calculations  

 * that would be needed when more devices are connected to the  

 * peripheral bus  

 */  

// GPIO_PUPDR (port pull-up/pull-down register) bits 1:0  

#define GPIO_NO_PUPD 0  

#define GPIO_PIN_PU  1  

#define GPIO_PIN_PD  2  

// 3 is reserved in the reference manual  

   

// alternate function  

// use these macros for the high and low registers  

// GPIO_AFHR GPIO_AFLR  

#define GPIO_AF0  0  

#define GPIO_AF1  1  

#define GPIO_AF2  2  

#define GPIO_AF3  3  

#define GPIO_AF4  4  

#define GPIO_AF5  5  

#define GPIO_AF6  6  

#define GPIO_AF7  7  

#define GPIO_AF8  8  

#define GPIO_AF9  9  

#define GPIO_AF10 10  

#define GPIO_AF11 11  

#define GPIO_AF12 12  

#define GPIO_AF13 13  

#define GPIO_AF14 14  

#define GPIO_AF15 15  

   

/* Only use init as we are using the GPIO ports  

 * to configure them as I2C pins  

 */  

void GPIO_ClkEnable(GPIO_regs_t* gpio_regs, uint8_t enable);  

void GPIO_Init(GPIO_control_t* gpio); 



   
 

   
 

 

   

#endif /* DRIVERS_INC_GPIO_H_ */  

 

ADCS_comms/drivers/Src/rcc.c 

/*  

 * rcc.c  

 *  

 *      Author: Adam  

 */  

   

   

#include "../Inc/rcc.h"  

   

/*  

 * RCC_PCLK1_get  

 * return the clk speed used for APB1 in this case  

 *  

 * This should be abstracted to some RCC.c file for other peripherals to use  

 *  

 * Refer to RCC_CFGR (clock configuration register)  

 *        SWS (system clock switch status) - bits 2 and 3  

 *        HPRE (AHP Prescaler) - bits 4 to 7  

 *        PPRE1 (APB1 prescaler) - bits 10 to 12  

 */  

uint32_t RCC_PCLK1_get(void){  

 uint32_t pclk1, freq, ahb_clk_div, apb1_clk_div;  

 uint8_t sws, hpre, ppre1;  

   

 /*  

  * sws:   bits 2 to 3   r-shift 2  then mask with 00000011  

  * ppre1: bits 10 to 12 r-shift 10 then mask with 00000111  

  * hre:   bits 4 to 7   r-shift 4  then mask with 00001111  

  */  

 sws   = (RCC->RCC_CFGR >> 2)  & 0x3;  

 ppre1 = (RCC->RCC_CFGR >> 10) & 0x7;  

 hpre  = (RCC->RCC_CFGR >> 4)  & 0xF;  

   

 if (sws == 0) // HSI  

  freq = 1600000;  

 else if (sws == 1) // HSE  

  // HSE (High Speed External) uses X2 crystal oscillator on evaluation board  

  freq = 800000; 



   
 

   
 

 

   

 // PLL is option 2, NA for our project  

    // option 3 is NA in reference manual  

 else return 0; // error  

   

 // AHB clk div  

 if (hpre < 8) ahb_clk_div = 1; // no clk divider  

 else if (hpre == 8) ahb_clk_div = 2;  

 else if (hpre == 9) ahb_clk_div = 4;  

 else if (hpre == 10) ahb_clk_div = 8;  

 else if (hpre == 11) ahb_clk_div = 16;  

 else if (hpre == 12) ahb_clk_div = 32;  

 else if (hpre == 13) ahb_clk_div = 64;  

 else if (hpre == 14) ahb_clk_div = 128;  

 else if (hpre == 15) ahb_clk_div = 512;  

 else return 0; // error  

   

 if (ppre1 < 4) apb1_clk_div = 1; // no clk divider  

 else if (ppre1 == 4) apb1_clk_div = 2;  

 else if (ppre1 == 5) apb1_clk_div = 4;  

 else if (ppre1 == 6) apb1_clk_div = 8;  

 else if (ppre1 == 7) apb1_clk_div = 16;  

 else return 0; // error  

   

 pclk1 = (freq / ahb_clk_div) / apb1_clk_div;  

 return pclk1;  

} 

 

ADCS_comms/drivers/Src/i2c.c 

/*  

 * i2c.c  

 *  

 *   i2c driver source code  

 *  

 *      Author: Adam Al-Khazraji  

 */  

   

#include "../Inc/i2c.h"  

#include "../Inc/rcc.h"  

   

/******* local function declarations *******/  

static void I2C_Start(I2C_regs_t* i2c_regs); 



   
 

   
 

 

static void I2C_Stop(I2C_regs_t* i2c_regs);  

static void I2C_SendAddr(I2C_regs_t* i2c_regs, uint8_t slave_addr);  

static void I2C_ClearADDRFlag(I2C_regs_t* i2c_regs);  

   

/*  

 * I2C_Enable_Disable  

 * toggle peripheral enable bit I2C_CR1_PE (bit 0) of I2C_CR1 (control reg)  

 */  

void I2C_Enable_Disable(I2C_regs_t* i2c_regs, uint8_t enable)  

{  

 if (enable == TRUE)  

  i2c_regs->CR1 |= (1 << I2C_CR1_PE);  

 else  

  i2c_regs->CR1 &= ~(1 << I2C_CR1_PE);  

}  

   

/*  

 * I2C_CLK_ENABLE  

 *  

 * set I2CEN bit for the I2C peripheral  

 *  - for I2C1, I2C2, and I2C3: RCC_APB1ENR bit at 21, 22, and 23 respectively  

 */  

void I2C_CLK_ENABLE(I2C_regs_t* i2c_regs, uint8_t enable)  

{  

 if (enable == TRUE){  

  if (i2c_regs == I2C1)  

   I2C1_CLK_ENABLE();  

  else if (i2c_regs == I2C2)  

   I2C2_CLK_ENABLE();  

  else if (i2c_regs == I2C3)  

   I2C3_CLK_ENABLE();  

  else  

   return;  

 }  

 else  

  return;  

}  

   

uint8_t I2C_GetStatus(I2C_regs_t* i2c_regs, uint32_t flag)  

{  

 if(i2c_regs->SR1 & flag)  

  return TRUE;  

 else return FALSE;  

} 



   
 

   
 

 

   

/*  

 * I2C_Init  

 *  

 * For this project, SCL will be init to default modes and speeds  

 * The set up is abstracted to an init function so that future groups  

 * could toggle the modes of the I2C peripherals  

 *  

 * I2C_CR2 FREQ field default to 16MHz (from APB1 using HSI clk)  

 * I2C_CCR CCR field calculated to be 80 (for 100KHz default SCL and FREQ 16MHz)  

 *  

 * We want clk stretching enabled since we have another MCU (raspberry Pi)  

 *  acting as master to the STM32 board so we know the I2C hardware will take  

 *  care of the timing for data transfer  

 *  

 * FM Duty Cycle standard mode: TLow is 4.7 microsecs and THigh is 4 microsecs  

 */  

void I2C_Init(I2C_control_t* i2c_control){  

   

 uint32_t tmp = 0;  

 uint16_t ccr = 0; // for 12 bit CCR field in I2C_CCR  

   

 // enable peripheral clk  

 I2C_CLK_ENABLE(i2c_control->i2c_regs, TRUE);  

   

 /**** I2C_CR1 ****/  

 tmp |= i2c_control->config.I2C_ACK << I2C_CR1_ACK; // bit 10 (ACK control bit)  

 i2c_control->i2c_regs->CR1 = tmp;  // set CR1 in register map  

   

 /**** I2C_CR2 ****/  

 // get how many MHz then mask with 111111 for first 6 bits  

 tmp = (RCC_PCLK1_get()/1000000U) & 0x3F;// set FREQ bits  

 i2c_control->i2c_regs->CR2 = tmp; // set CR2 in register map  

   

 /**** I2C_OAR1 ****/  

 // Note - we only use 7 bit slave address for this project  

 // shift by 1 due to lsb being ADD0 which is NA for 7 bit address  

 tmp = i2c_control->config.I2C_DeviceAddress << I2C_OAR1_OFFSET_ADD0;  

   

 // reference manual states bit 14 must always be 1 (reserved)  

 tmp |= (1 << I2C_OAR1_RESERVED);  

   

 // bit 15 - ADDMODE must be kept 0 for 7 bit address mode  

 // set OAR1 in register map (need this address when in slave mode) 



   
 

   
 

 

 i2c_control->i2c_regs->OAR1 = tmp;  

   

 /**** I2C_CCR ****/  

    // CCR field is bit 0 to 11  

 // control bit 15 F/S is 0 for standard mode used for this project  

 tmp = 0;  

 if(i2c_control->config.I2C_SCL <= SCL_DEFAULT)  

 {  

  ccr = RCC_PCLK1_get()/(2 * i2c_control->config.I2C_SCL); // multiply by 2 

from standard mode ccr formula  

  tmp |= (ccr & 0xFFF); // first 12 bits  

 }  

 else{ // Fast Mode  

  tmp |= (1 << I2C_CCR_FS); // set F/S to Fast Mode (bit 15)  

  tmp |= (i2c_control->config.I2C_FM << I2C_CCR_DUTY); // set DUTY (bit 14) to 

given FM duty cycle  

  if(i2c_control->config.I2C_FM == FMPI2C_DUTY_CYCLE_2)  

   ccr = RCC_PCLK1_get()/(3 * i2c_control->config.I2C_SCL); // DUTY is 2  

  else  

   ccr = RCC_PCLK1_get()/(25 * i2c_control->config.I2C_SCL); // DUTY is 

16/9  

   

  // set CCR field and mask to first 12 bits  

  tmp |= (ccr & 0xFFF);  

 }  

 // set CCR is register map  

 i2c_control->i2c_regs->CCR = tmp;  

   

 /**** I2C_TRISE ****/  

 if(i2c_control->config.I2C_SCL <= SCL_DEFAULT)  

 {  

  tmp = (RCC_PCLK1_get() / 1000000U) + 1; // add 1 from reference manual  

 }  

 else{ // fast mode  

  tmp = ((RCC_PCLK1_get() * 300) / 1000000000U) + 1;  

 }  

   

 i2c_control->i2c_regs->TRISE = (tmp & 0x3F); // 6 bit mask  

   

 return;  

}  

   

void I2C_MasterSend(I2C_control_t* i2c_control, uint8_t* tx_buf, uint32_t len, uint8_t 

slave_addr) 



   
 

   
 

 

{  

 // start condition  

 I2C_Start(i2c_control->i2c_regs);  

   

 // wait for SB (start bit)  

 while(!(I2C_GetStatus(i2c_control->i2c_regs, I2C_SR1_FLAG_SB)));  

   

 I2C_SendAddr(i2c_control->i2c_regs, slave_addr);  

   

 I2C_ClearADDRFlag(i2c_control->i2c_regs);  

   

 // send data until len is 0  

 for (; len > 0; len--){  

  while(!(I2C_GetStatus(i2c_control->i2c_regs, I2C_SR1_FLAG_TXE))); // wait 

for TxE  

  i2c_control->i2c_regs->DR = *tx_buf; // dereference for value  

  tx_buf++; // increment position  

 }  

   

 // wait for TxE and BTF in I2C_SR1 then set STOP to 1 in I2C_CR1  

 while(!(I2C_GetStatus(i2c_control->i2c_regs, I2C_SR1_FLAG_TXE)));  

 while(!(I2C_GetStatus(i2c_control->i2c_regs, I2C_SR1_FLAG_BTF)));  

 I2C_Stop(i2c_control->i2c_regs);  

   

 return;  

}  

   

// i2c start condition  

static void I2C_Start(I2C_regs_t* i2c_regs){  

 /* START bit 8 in I2C_CR1  

  * set to 1 for repeated start generation  

  * if PE is 0, the i2c hardware will clear START bit  

  */  

 i2c_regs->CR1 |= (1 << I2C_CR1_START);  

   

 return;  

}  

   

// i2c stop condition  

static void I2C_Stop(I2C_regs_t* i2c_regs){  

 // I2C_CR1 STOP (bit 9)  

 // when bit set to 1:  

 //    "Stop generation after the current byte transfer or after the current Start 

condition is sent" 



   
 

   
 

 

 i2c_regs->CR1 |= (1 << I2C_CR1_STOP);  

}  

   

// send address with r/w bit set to 0  

static void I2C_SendAddr(I2C_regs_t* i2c_regs, uint8_t slave_addr)  

{  

 slave_addr = (slave_addr << 1); // shift left for r/w_ bit  

 slave_addr &= ~(1); // set r/w_ bit to 0  

   

 /* I2C_DR (data register) has DR field from bits 0 to 7  

  * "Transmitter mode: Byte transmission starts automatically when a byte is written 

in the DR register" - 24.6.5  

  */  

 i2c_regs->DR = slave_addr;  

   

 return;  

}  

   

/* ADDR bit is SR1  

 * "This bit is cleared by software reading SR1 register followed reading SR2  

 * or by hardware when PE=0" - 24.6.6  

 */  

static void I2C_ClearADDRFlag(I2C_regs_t* i2c_regs){  

 uint32_t foo = i2c_regs->SR1;  

 foo = i2c_regs->SR2;  

 (void)foo;  

} 

 

ADCS_comms/drivers/Src/gpio.h 

/*  

 * gpio.c  

 *  

 */  

   

#include "../Inc/gpio.h"  

#include "../Inc/rcc.h"  

   

/* Only use init as we are using the GPIO ports  

 * to configure them as I2C pins  

 */  

void GPIO_ClkEnable(GPIO_regs_t* gpio_regs, uint8_t enable)  

{ 



   
 

   
 

 

 if(enable == TRUE)  

 {  

  if(gpio_regs == GPIOA)  

   GPIOA_CLK_ENABLE();  

  else if (gpio_regs == GPIOB)  

   GPIOB_CLK_ENABLE();  

 }  

 else return;  

}  

   

void GPIO_Init(GPIO_control_t* gpio)  

{  

 uint32_t tmp = 0;  

 //enable the peripheral clock  

   

 GPIO_ClkEnable(gpio->gpio_regs, TRUE);  

   

 // pin mode  

 // non IT modes  

 if(gpio->config.GPIO_Mode <= GPIO_MODE_ANALOG)  

 {  

  // multiply by 2 since each pin mode is a two bit field in GPIO_MODER  

  tmp = (gpio->config.GPIO_Mode << (2 * gpio->config.GPIO_Pin ) );  

  gpio->gpio_regs->GPIO_MODER &= ~( 0x3 << (2 * gpio->config.GPIO_Pin)); 

//clearing  

  gpio->gpio_regs->GPIO_MODER |= tmp; //setting  

 }  

 // else is IT iterrupt modes which is unused for this  

 // project as we are focusing on I2C driver  

   

 // speed  

 tmp = (gpio->config.GPIO_Speed << (2 * gpio->config.GPIO_Pin));  

 gpio->gpio_regs->GPIO_OSPEEDR &= ~( 0x3 << ( 2 * gpio->config.GPIO_Pin)); 

//clearing  

 gpio->gpio_regs->GPIO_OSPEEDR |= tmp;  

   

 //pull-up/pull-down resistor  

 tmp = (gpio->config.GPIO_PUPD << ( 2 * gpio->config.GPIO_Pin) );  

 gpio->gpio_regs->GPIO_PUPDR &= ~( 0x3 << ( 2 * gpio->config.GPIO_Pin)); //clearing  

 gpio->gpio_regs->GPIO_PUPDR |= tmp;  

   

 //output type  

 tmp = (gpio->config.GPIO_Output << gpio->config.GPIO_Pin);  

 gpio->gpio_regs->GPIO_OTYPER &= ~( 0x1 << gpio->config.GPIO_Pin); //clearing 



   
 

   
 

 

 gpio->gpio_regs->GPIO_OTYPER |= tmp;  

   

 //5. configure the alt functionality  

 if(gpio->config.GPIO_Mode == GPIO_MODE_ALTFUNC)  

 {  

  uint8_t high_reg =  gpio->config.GPIO_Pin / 8;  

  tmp =  gpio->config.GPIO_Pin % 8;  

   

  if(high_reg)  

  {  

   gpio->gpio_regs->GPIO_AFRH &= ~(0xF << (4 * tmp)); //clear  

   gpio->gpio_regs->GPIO_AFRH |= (gpio->config.GPIO_AltFunc << (4 * 

tmp));  

  }  

  else { // alternate function reg low  

   gpio->gpio_regs->GPIO_AFRL &= ~(0xF << (4 * tmp)); //clear  

   gpio->gpio_regs->GPIO_AFRL|= (gpio->config.GPIO_AltFunc << (4 * 

tmp));  

  }  

 }  

   

} 

 

ADCS_comms/Inc/master_send.h 

/*  

 * master_send.h  

 *  

 *      Author: Adam  

 *  

 *      This is to test master send data  

 *      The STM32 communicates to an Arudino i2c slave  

 */  

   

/* Pins:  

 * SCL - PB8  

 * SDA - PB9  

 */  

#ifndef INC_MASTER_SEND_H_  

#define INC_MASTER_SEND_H_  

   

#define MASTER_ADDR 0x61 // STM addr is NA  

#define SLAVE_ADDR 0x68 // Arduino slave address 



   
 

   
 

 

   

void master_send_init(void);  

void master_send_msg(void);  

   

#endif /* INC_MASTER_SEND_H_ */ 

 

ADCS_comms/Src/master_send.c 

/*  

 * master_send_test.c  

 *  

 *      Author: Adam  

 *  

 *      This is to test master send data  

 *      The STM32 communicates to an Arudino i2c slave  

 */  

   

/* Pins:  

 * SCL - PB8  

 * SDA - PB9  

 */  

   

#include <stdio.h>  

#include <string.h>  

#include "../drivers/Inc/mcu.h"  

#include "../drivers/Inc/gpio.h"  

#include "../drivers/Inc/i2c.h"  

#include "../Inc/master_send.h"  

   

I2C_control_t I2C1_comm;  

   

void I2C1_init_pins(void)  

{  

 GPIO_control_t i2c_pins;  

   

 i2c_pins.gpio_regs = GPIOB;  

 i2c_pins.config.GPIO_Mode = GPIO_MODE_ALTFUNC; // alternating function type  

 i2c_pins.config.GPIO_Output = GPIO_OUTPUT_OD; // open drain output type  

 i2c_pins.config.GPIO_PUPD = GPIO_PIN_PU; // internal pullup resistor  

 i2c_pins.config.GPIO_AltFunc = GPIO_AF4; // alternate function mode is 4  

 i2c_pins.config.GPIO_Speed = GPIO_SPEED_FAST;  

   

 // scl 



   
 

   
 

 

 i2c_pins.config.GPIO_Pin = GPIO_PIN_8;  

 GPIO_Init(&i2c_pins);  

   

 // sda  

 i2c_pins.config.GPIO_Pin = GPIO_PIN_9;  

 GPIO_Init(&i2c_pins);  

}  

   

void I2C1_init_config(void)  

{  

 I2C1_comm.i2c_regs = I2C1;  

 I2C1_comm.config.I2C_ACK = I2C_ACK_ENABLE;  

 I2C1_comm.config.I2C_DeviceAddress = MASTER_ADDR; // NA since STM32 is master  

 I2C1_comm.config.I2C_FM = FMPI2C_DUTY_CYCLE_2; // NA since we're using standard 

mode  

 I2C1_comm.config.I2C_SCL = SCL_DEFAULT;  

   

 I2C_Init(&I2C1_comm);  

}  

   

void master_send_init(void)  

{  

 I2C1_init_pins();  

 I2C1_init_config();  

 I2C_Enable_Disable(I2C1, TRUE);  

}  

   

void master_send_msg(void)  

{  

 uint8_t msg[] = "STM Master send to Arduino Slave\n";  

 I2C_MasterSend(&I2C1_comm, msg, strlen((char*)msg), SLAVE_ADDR);  

} 

 

Arduino_ide/slave_receiver_2/slave_receiver_2.ino [18]  

  

// Wire Slave Receiver  

// by Nicholas Zambetti <http://www.zambetti.com>  

   

// Demonstrates use of the Wire library  

// Receives data as an I2C/TWI slave device  

// Refer to the "Wire Master Writer" example for use with this  

  



   
 

   
 

 

// Created 29 March 2006  

   

// This example code is in the public domain.  

   

   

#include <Wire.h>  

#define MY_ADDR   0x68  

   

void setup() {  

  Wire.begin(MY_ADDR);                // join i2c bus with address #8  

  Wire.onReceive(receiveEvent); // register event  

  Serial.begin(9600);           // start serial for output  

   

  Serial.println("Slave is ready : Address 0x68");    

  Serial.println("Waiting for data from master");   

}  

   

void loop() {  

   

}  

   

// function that executes whenever data is received from master  

// this function is registered as an event, see setup()  

void receiveEvent(int howMany) {  

  while (1 < Wire.available()) { // loop through all but the last  

    char c = Wire.read(); // receive byte as a character  

    Serial.print(c);         // print the character  

  }  

  int x = Wire.read();    // receive byte as an integer  

  Serial.println(x);         // print the integer  

} 

 

 

 

 

 

 

 



   
 

   
 

APPENDIX H 

Payload Module Software 

 

 

Systemd service file – payload.service 

[Unit] 
 

Description=Payload main application 
 

After=multi-user.target 
 

Conflicts=getty@tty1.service 
 

 
  

[Service] 
 

Type=simple 
 

ExecStart=/usr/bin/python3 /usr/local/bin/run.py 
 

StandardInput=tty-force 
 

 
  

[Install] 
 

WantedBy=multi-user.target 

 

Main file – run.py  

 

 

#!/usr/bin/env python3 
 

 
  

import argparse 
 

 
  

# get arguments 
 

parser = argparse.ArgumentParser() 



   
 

   
 

 

parser.add_argument('--debug', '-d', dest='debug', action='store_const', 
 

                    const=True, default=False, 
 

                    help='run application in debug mode') 
 

parser.add_argument('--uart', '-u', dest='uart', action='store_const', 
 

                    const=False, default=True, 
 

                    help='run application using real uart port - defaults to mock uart 

connection') 
 

args = parser.parse_args() 
 

 
  

# Start payload application 
 

from app import main 
 

main.run(debug=args.debug, uart=args.uart) 

 

Config File – config.py 

#!/usr/bin/env 

python3 
 

 
  

from app.handlers import command_handler 
 

 
  

# RETURN CODES 
 

RETURN_CODE = { 
 

    0 : "OK", 
 

    1 : "ERR", 
 

    2 : "DONE", 
 

    3 : "FAIL" 
 

} 
 

 
  

COMMANDS = { 
 

    "ping", 



   
 

   
 

 

    "capture_image", 
 

    "transfer_image" 
 

} 
 

 
  

PORT_NAME = { 
 

    0 : "/dev/ttyAMA0" 
 

} 
 

 
  

REGEX = "\<\<(.*?)\>\>" 
 

 
  

 
  

CAMERA = { 
 

    "resolution" : {"height": 1200, "width": 1600}  
 

} 
 

 
  

RETRY = 5 

 

PAYLOAD APPLICATION 

main.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

from app.winserial import uart 
 

from app.winlogging import logger 
 

from app.winapi import obc 
 

from app.handlers import command_handler 



   
 

   
 

 

 
  

import time 
 

import serial 
 

 
  

# setup logger 
 

logger = logger.Logger("main") 
 

 
  

# setup global objects 
 

OBC = obc.OBC() 
 

ch = command_handler.CommandHandler() 
 

 
  

def run(debug, uart): 
 

 
  

    logger.info("Trying to initiate connection with OBC...") 
 

    OBC.connect(uart) # this will loop until a connection is made 
 

 
  

    logger.info("Initiated connection with OBC. Waiting for messages...") 
 

    # start main system loop 
 

    while True: 
 

        try: 
 

            command = OBC.read()  
 

            if command == None: 
 

                continue 
 

 
  

            if (OBC.check_command(command)): 
 

                OBC.status(True) 
 

                success, response = ch.handle(command, OBC) 
 

                if success: 



   
 

   
 

 

                    logger.info("Successful handling command: {}. Sending back reponse: 

{}".format(command, response)) 
 

                    OBC.write(response) 
 

                else: 
 

                    logger.info("Unsuccessful handling command: {}. Sending back error 

status...".format(command)) 
 

                    OBC.status(False) 
 

            else: 
 

                logger.info("Command received is invalid: {}. Sending back error 

status...".format(command)) 
 

                OBC.status(False) 
 

 
  

        except Exception as e: 
 

            logger.warn("Exception {}:{}".format(type(e).__name__, str(e))) 
 

            # pass to error handler here? 
 

            # error_handler.handle(error) 
 

 
  

        finally: 
 

            time.sleep(0.01) 
 

            # kick watchdog here 
 

 
  

if __name__ == "__main__": 
 

    run() 

 

logger.py 

#!/usr/bin/env 

python3 
 

import logging 
 

 
 



   
 

   
 

 

class Logger(): 
 

 
  

    def __init__(self, logger_name, log_level=logging.DEBUG): 
 

        # setup logging 
 

        self.logger = logging.getLogger(logger_name) 
 

        self.logger.setLevel(log_level) 
 

         
 

        # setup log file handler 
 

        fh = logging.FileHandler('/var/log/app/{}.log'.format(logger_name)) 
 

        fh.setLevel(log_level) 
 

         
 

        # setup log console hanlder 
 

        ch = logging.StreamHandler() 
 

        ch.setLevel(log_level) 
 

 
  

        # set log format 
 

        formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - 

%(message)s') 
 

        fh.setFormatter(formatter) 
 

        ch.setFormatter(formatter) 
 

         
 

        # add log handlers to logger 
 

        self.logger.addHandler(fh) 
 

        self.logger.addHandler(ch) 
 

 
  

    def info(self, message): 
 

        self.logger.info(message) 
 

     
 

    def debug(self, message): 



   
 

   
 

 

        self.logger.debug(message) 
 

 
  

    def warn(self, message): 
 

        self.logger.warn(message) 
 

     
 

    def error(self, message): 
 

        self.logger.error(message) 

 

OBC API – obc.py 

#!/usr/bin/env 

python3 
 

 
  

''' 
 

API for interacting with OBC 
 

''' 
 

 
  

import time 
 

import re 
 

 
  

from app.winlogging import logger 
 

from app.winserial import uart 
 

from app import config 
 

 
  

class OBC(): 
 

 
  

    def __init__(self): 
 

        self.logger = logger.Logger("OBC") 
 

        self.UART = None 



   
 

   
 

 

        self.use_uart = None 
 

 
  

    # get UART port 
 

    def connect(self, use_uart): 
 

        self.use_uart = use_uart 
 

        if self.use_uart: 
 

            while True: 
 

                try:  
 

                    self.UART = uart.UART(0)  
 

                    break 
 

                except Exception as e: 
 

                    self.logger.error("FATAL ERROR: Unable to open UART port 

{}:{}. No communication with OBC. Retrying in 10 

seconds...".format(type(e).__name__, str(e))) 
 

                    # maybe reboot here after a while? -> pass to error handler 

for that? 
 

                    time.sleep(10) 
 

        else: 
 

            self.logger.info("Setup fake connection with OBC for testing.") 
 

 
  

    # read from UART serial port 
 

    def read(self): 
 

        if self.use_uart: 
 

            success, message = self.UART.read() 
 

            if success: 
 

                return self.unpack(message) 
 

            return None 
 

        else: 
 

            return self.unpack(input("Enter fake serial input:")) 



   
 

   
 

 

 
  

    # check if command is valid 
 

    def check_command(self, command): 
 

        if command in config.COMMANDS: 
 

            return True 
 

        else: 
 

            return False 
 

 
  

    def pack(self, message): 
 

        return "<<" + message + ">>" 
 

 
  

    def unpack(self, message): 
 

        commands = re.findall(config.REGEX, message) 
 

        if len(commands) != 0: 
 

            return commands[0] 
 

        else: 
 

            return None 
 

 
  

    # write respone back to OBC 
 

    def write(self, message): 
 

        if self.use_uart: 
 

            self.UART.write(self.pack(message)) 
 

        else: 
 

            print(self.pack(message)) 
 

 
  

    # write status back to OBC 
 

    def status(self, success): 
 

        if self.use_uart: 



   
 

   
 

 

            if success: 
 

                self.UART.write(self.pack(config.RETURN_CODE[0])) 
 

            else: 
 

                self.UART.write(self.pack(config.RETURN_CODE[1])) 
 

 
  

        else: 
 

            if success: 
 

                print(self.pack(config.RETURN_CODE[0])) 
 

            else: 
 

                print(self.pack(config.RETURN_CODE[1])) 
 

 
  

    def send_image(self, filename): 
 

        if self.use_uart: 
 

            return self.UART.transfer_image(filename) 
 

        else: 
 

            return True 

 

Handlers 

command_handler.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

''' 
 

Class for handling commands received from OBC 
 

''' 
 

 
 



   
 

   
 

 

import time 
 

from app.winlogging import logger 
 

from app.handlers import image_handler 
 

from app.handlers import ping_handler 
 

import re 
 

from app import config 
 

 
  

image_handler = image_handler.ImageHandler() 
 

ping_handler = ping_handler.PingHandler() 
 

#error_handler = error_handler.ErrorHandler() 
 

 
  

class CommandHandler(): 
 

 
  

    def __init__(self): 
 

        # setup logger 
 

        self.logger = logger.Logger("command-handler") 
 

 
  

    def handle(self, command, OBC): 
 

        # send the command to the appropriate handler 
 

         
 

        # command: ping 
 

        if command == "ping": 
 

            success, response = ping_handler.handle_ping() 
 

         
 

        # command: image_capture 
 

        elif command == "capture_image": 
 

            success, response = image_handler.handle_capture() 
 

 
 



   
 

   
 

 

        # command: image_transfer 
 

        elif command == "transfer_image": 
 

            success, response = image_handler.handle_transfer(OBC) 
 

 
  

        else: 
 

            # should never get here 
 

            self.logger.warn("FATAL: Command {} is in valid commands but doesn't have 

handler.".format(command)) 
 

            success = False 
 

         
 

        return success, response 

 

image_handler.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

''' 
 

Class for interacting with images (transfer, read/write, captures, etc.) 
 

''' 
 

 
  

import os 
 

import time 
 

from datetime import datetime 
 

from app.winserial import uart 
 

from app.winlogging import logger 
 

from app import config 
 

 
 



   
 

   
 

 

# pi camera stuff 
 

from picamera import PiCamera 
 

from picamera.array import PiRGBArray 
 

import time 
 

import cv2 
 

 
  

class ImageHandler(): 
 

 
  

    def __init__(self): 
 

        # setup logger 
 

        self.logger = logger.Logger("image-handler")  
 

 
  

    def handle_capture(self): 
 

        # capture image here 
 

        success = self.capture_image() 
 

        if success: 
 

            return success, config.RETURN_CODE[2] 
 

        else: 
 

            return success, config.RETURN_CODE[3] 
 

 
  

    def handle_transfer(self, OBC): 
 

        # start image transfer 
 

        success = self.transfer_image(OBC) 
 

        if success: 
 

            return success, config.RETURN_CODE[2] 
 

        else: 
 

            return success, config.RETURN_CODE[3] 
 

 
 



   
 

   
 

 

    def capture_image(self): 
 

        try: 
 

            # initialize the camera and grab a reference to the raw camera capture 
 

            camera = PiCamera() 
 

            camera.resolution = (config.CAMERA["resolution"]["width"], 

config.CAMERA["resolution"]["height"]) 
 

            rawCapture = PiRGBArray(camera) 
 

             
 

            # allow the camera to warmup 
 

            time.sleep(0.1) 
 

             
 

            # grab an image from the camera 
 

            camera.capture(rawCapture, format="bgr") 
 

            image = rawCapture.array 
 

 
  

            # save image with timestamp 
 

            ts = datetime.now() 
 

            filename = '/images/{}-{}-{}.{}:{}:{}.jpg'.format(ts.year, ts.month, ts.day, 

ts.hour, ts.minute, ts.second) 
 

            cv2.imwrite(filename, image) 
 

 
  

            camera.close() 
 

 
  

            self.logger.info("Successful image capture. Image saved at: 

{}".format(filename)) 
 

            return True 
 

         
 

        except Exception as e: 
 

            self.logger.warn("Unable to capture image: {} | {}".format(type(e).__name__, 

str(e))) 



   
 

   
 

 

            return False 
 

 
  

    def transfer_image(self, OBC): 
 

        try: 
 

            # wait for the OBC to tell us to start 
 

            start = False 
 

            for i in range(config.RETRY): 
 

                command = OBC.read() 
 

                if command == "START": 
 

                    self.logger.debug("Got START command. Starting image transfer...") 
 

                    start = True 
 

                    break 
 

                else: 
 

                    self.logger.debug("Waiting for START for image transfer. Got: 

{}".format(command)) 
 

                    start = False 
 

 
  

            if start: 
 

                filename = None 
 

                latest_time = 0 
 

                with os.scandir('/images/') as entries: 
 

                    for entry in entries: 
 

                        info = entry.stat() 
 

                        if info.st_mtime > latest_time: 
 

                            filename = entry.name 
 

                            latest_time = info.st_mtime 
 

 
  

                if filename == None: 
 

                    return False 



   
 

   
 

 

 
  

                filepath = '/images/{}'.format(filename) 
 

                # open up stream to start image transfer 
 

 
  

                return OBC.send_image(filepath) 
 

            else: 
 

                self.logger.debug("Aborting image transfer. Never got START command.") 
 

                return False 
 

 
  

        except Exception as e: 
 

            self.logger.warn("Unable to transfer image name: {} error: 

{}|{}".format(filename, type(e).__name__, str(e))) 
 

            return False 

 

ping_handler.py 

#!/usr/bin/env 

python3 
 

 
  

''' 
 

Class for handling ping command received from OBC 
 

''' 
 

 
 

  

  

  

  

 

 

import time 



   
 

   
 

 

from app.winlogging import logger 
 

 
  

class PingHandler: 
 

 
  

    def __init__(self): 
 

        # setup logger 
 

        self.logger = logger.Logger("ping-handler") 
 

 
  

    def handle_ping(self): 
 

        return True, "pong" 

 

 

queue_handler.py 

#!/usr/bin/env 

python3 
 

 
  

''' 
 

Class for handling input serial queue received from OBC 
 

''' 
 

 
  

import time 
 

from app.winlogging import logger 
 

import re 
 

from threading import Thread 
 

import queue 
 

 
  

 
  

class QueueHandler(Thread): 



   
 

   
 

 

 
  

    def __init__(self): 
 

        # setup logger 
 

        self.logger = logger.Logger("queue-handler") 
 

 
  

    def check_command(self, buffer): 
 

        command = self.parse(buffer) 
 

        for key in COMMANDS: 
 

            if command in key: 
 

                return True 
 

        return False 
 

 
  

    def handle(self, buffer): 
 

        # send the command to the appropriate handler 
 

        if command in COMMANDS["PING"]: 
 

            success, response = ping_handler.handle(command) 
 

        elif command in COMMANDS["IMAGE"]: 
 

            success, response = image_handler.handle(command) 
 

        else: 
 

            # should never get here 
 

            self.logger.warn("FATAL: Got invalid command from OBC: {}. PREVIOUS 

CHECK FOR THIS FAILED.".format(command)) 
 

            success = False 
 

            response = INVALID 
 

         
 

        response = format(response) 
 

        return success, response 
 

 
  

    # gets input from UART buffer, parses it, and returns commands 



   
 

   
 

 

    def parse(self, buffer): 
 

        commands = re.findall(REGEX, buffer) 
 

        if commands is not None: 
 

            return True, commands 
 

        else: 
 

            return False, None 
 

 
  

    # format responses to be send over serial back to OBC 
 

    def format(self, command): 
 

        return "<<" + command + ">>" 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

APPENDIX I 

KubOS OBC Software 

KUBOS SERVICES 

SYSTEMD SERVICE INIT SCRIPTS 

adcs-service.init 

#!/bin/sh 
 

 
  

# Start the ADCS service in the background  
 

# passing in the location of the config.toml file  
 

# (in the same directory as the service) 
 

export PYTHONPATH=$PYTHONPATH:/home/kubos/winlib 
 

python /home/kubos/adcs/adcs-service/service.py -c /etc/kubos-config.toml & 
 

 
  

exit 0 

 

eps-service.init 

#!/bin/sh 
 

 
  

# Start the EPS service in the background  
 

# passing in the location of the config.toml file  
 

# (in the same directory as the service) 
 

export PYTHONPATH=$PYTHONPATH:/home/kubos/winlib 
 

python /home/kubos/eps/eps-service/service.py -c /etc/kubos-config.toml & 
 

 
  

exit 0 

 

rtc-service.init 



   
 

   
 

  

  

 

#!/bin/sh 
 

 
  

# Start the RTC service in the background  
 

# passing in the location of the config.toml file  
 

# (in the same directory as the service) 
 

export PYTHONPATH=$PYTHONPATH:/home/kubos/winlib 
 

python /home/kubos/rtc/rtc-service/service.py -c /etc/kubos-config.toml & 
 

 
  

exit 0 

 

radio-service.init 

#!/bin/sh 
 

 
  

# Start the EPS service in the background  
 

# passing in the location of the config.toml file  
 

# (in the same directory as the service) 
 

export PYTHONPATH=$PYTHONPATH:/home/kubos/winlib 
 

python /home/kubos/radio/radio-service/service.py -c /etc/kubos-config.toml & 
 

 
  

exit 0 

 

payload-service.init 

#!/bin/sh 
 

 
  

# Start the payload service in the background  



   
 

   
 

 

# passing in the location of the config.toml file  
 

# (in the same directory as the service) 
 

export PYTHONPATH=$PYTHONPATH:/home/kubos/winlib 
 

python /home/kubos/payload/payload-service/service.py -c /etc/kubos-config.toml & 
 

 
  

exit 0 

MONIT SERVICE SCRIPTS 

adcs-service.monit 

CHECK PROCESS 

adcs-service 

PIDFILE 

/var/run/adcs-

service.pid 
 

 START PROGRAM = "/home/system/etc/init.d/S01adcs-service start" 
 

 IF 3 RESTART WITHIN 10 CYCLES THEN TIMEOUT 

 

eps-service.monit 

CHECK PROCESS 

eps-service 

PIDFILE 

/var/run/eps-

service.pid 
 

 START PROGRAM = "/home/system/etc/init.d/S01eps-service start" 
 

 IF 3 RESTART WITHIN 10 CYCLES THEN TIMEOUT 

 

rtc-service.monit 

 

CHECK PROCESS rtc-service PIDFILE /var/run/rtc-service.pid 
 

 START PROGRAM = "/home/system/etc/init.d/S01rtc-service start" 
 

 IF 3 RESTART WITHIN 10 CYCLES THEN TIMEOUT 

 



   
 

   
 

radio-service.monit 

  

  

 

CHECK PROCESS radio-service PIDFILE /var/run/radio-service.pid 
 

 START PROGRAM = "/home/system/etc/init.d/S01radio-service start" 
 

 IF 3 RESTART WITHIN 10 CYCLES THEN TIMEOUT 

 

payload-service.monit 

CHECK PROCESS 

payload-service 

PIDFILE 

/var/run/payload-

service.pid 
 

 START PROGRAM = "/home/system/etc/init.d/S01payload-service start" 
 

 IF 3 RESTART WITHIN 10 CYCLES THEN TIMEOUT 

 

ADCS SERVICE 

service.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate service code which reads the config file and starts up the 
 

GraphQL/HTTP endpoint. (should not need to much modification) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 



   
 

   
 

 

__license__ = "MIT" 
 

 
  

import logging 
 

 
  

from service import schema 
 

from kubos_service.config import Config 
 

from logging.handlers import SysLogHandler 
 

import sys 
 

 
  

config = Config("adcs-service") 
 

 
  

# Setup logging 
 

logger = logging.getLogger("adcs-service") 
 

logger.setLevel(logging.DEBUG) 
 

handler = SysLogHandler(address='/dev/log', facility=SysLogHandler.LOG_DAEMON) 
 

formatter = logging.Formatter('adcs-service: %(message)s') 
 

handler.formatter = formatter 
 

logger.addHandler(handler) 
 

 
  

# Set up a handler for logging to stdout 
 

stdout = logging.StreamHandler(stream=sys.stdout) 
 

stdout.setFormatter(formatter) 
 

logger.addHandler(stdout) 
 

 
  

from kubos_service import http_service 
 

# Start an http service 
 

http_service.start(config, schema.schema) 
 

 
 



   
 

   
 

 

#from kubos_service import udp_service 
 

 
  

# Start a udp service with optional context 
 

# udp_service.start(config, schema, {'bus': '/dev/ttyS3'}) 
 

 
  

# Start a udp service 
 

#udp_service.start(logger, config, schema) 

 

app.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate Flask setup for service application (should not be modified) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

from flask import Flask 
 

from flask_graphql import GraphQLView 
 

from .schema import schema 
 

 
  

def create_app(): 
 

    """ 
 

    Creates graphql and graphiql endpoints 
 

    """ 



   
 

   
 

 

 
  

    app = Flask(__name__) 
 

    app.debug = True 
 

 
  

    app.add_url_rule( 
 

        '/', 
 

        view_func=GraphQLView.as_view( 
 

            'graphql', 
 

            schema=schema, 
 

            graphiql=False 
 

        ) 
 

    ) 
 

 
  

    app.add_url_rule( 
 

        '/graphiql', 
 

        view_func=GraphQLView.as_view( 
 

            'graphiql', 
 

            schema=schema, 
 

            graphiql=True 
 

        ) 
 

    ) 
 

 
  

    return app 

 

models.py 

  

  



   
 

   
 

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Graphene ObjectType classes for subsystem modeling. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

import serial 
 

 
  

# POWER 
 

class PowerStateEnum(graphene.Enum): 
 

    OFF = 0 
 

    ON = 1 
 

    RESET = 2 
 

 
  

class PowerState(graphene.ObjectType): 
 

    state = graphene.Field(PowerStateEnum) 
 

 
  

# MODE 
 

class ModeStateEnum(graphene.Enum): 
 

    IDLE = 0 
 

    DETUMBLE = 1 
 

    POINTING = 2 
 

 
 



   
 

   
 

 

class ModeState(graphene.ObjectType): 
 

    state = graphene.Field(ModeStateEnum) 
 

 
  

# ORIENTATION 
 

class Orientation(graphene.ObjectType): 
 

    x = graphene.Float() 
 

    y = graphene.Float() 
 

    z = graphene.Float() 
 

    yaw = graphene.Float() 
 

    pitch = graphene.Float() 
 

    roll = graphene.Float() 
 

 
  

# SPIN 
 

class Spin(graphene.ObjectType): 
 

    x = graphene.Float() 
 

    y = graphene.Float() 
 

    z = graphene.Float() 
 

 
  

# Mutation Result 
 

class Result(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

 
  

# Control power mutation input 
 

class ControlPowerInput(graphene.InputObjectType): 
 

    power = graphene.Field(PowerStateEnum) 
 

 
  

# Set ADCS mode mutation input 



   
 

   
 

 

class SetModeInput(graphene.InputObjectType): 
 

    mode = graphene.Field(ModeStateEnum) 
 

 
  

class Telemetry(graphene.ObjectType): 
 

    # telemetry items for general status of hardware 
 

    mode = graphene.Field(ModeState) 
 

    power = graphene.Field(PowerState) 
 

    orientation = graphene.Field(Orientation) 
 

    spin = graphene.Field(Spin) 

 

schema.py 

  

 

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Graphene schema setup to enable queries. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

from .models import * 
 

from obcapi import adcs  
 

 
 



   
 

   
 

 

# Local subsystem instance for tracking state 
 

# May not be neccesary when tied into actual hardware 
 

_adcs = adcs.ADCS() 
 

 
  

############## QUERIES ################ 
 

 
  

''' 
 

type Query { 
 

    ping(): String 
 

    power(): PowerState 
 

    mode(): ModeState 
 

    orientation(): Orientation 
 

    spin(): Spin 
 

    telemetry(): Telemetry 
 

} 
 

''' 
 

class Query(graphene.ObjectType): 
 

 
  

    ''' 
 

    query { 
 

        ping 
 

    } 
 

    ''' 
 

    ping = graphene.String() 
 

    def resolve_ping(self, info): 
 

        return _adcs.ping() 
 

 
  

    ''' 



   
 

   
 

 

    query { 
 

        power { state } 
 

    } 
 

    ''' 
 

    power = graphene.Field(PowerState) 
 

    def resolve_power(self, info): 
 

        state = _adcs.power() 
 

        return PowerState(state=state) 
 

 
  

    ''' 
 

    query { 
 

        mode { state } 
 

    } 
 

    ''' 
 

    mode = graphene.Field(ModeState) 
 

    def resolve_mode(self, info): 
 

        state = _adcs.mode() 
 

        return ModeState(state=state) 
 

 
  

    ''' 
 

    query { 
 

        orientation { x y z yaw pitch roll } 
 

    } 
 

    ''' 
 

    orientation = graphene.Field(Orientation) 
 

    def resolve_orientation(self, info): 
 

        orient = _adcs.orientation() 



   
 

   
 

 

        return 

Orientation(x=orient[0],y=orient[1],z=orient[2],yaw=orient[3],pitch=orient[4],roll=orient[5

]) 
 

 
  

    ''' 
 

    query { 
 

        spin { x y z } 
 

    } 
 

    ''' 
 

    spin = graphene.Field(Spin) 
 

    def resolve_spin(self, info): 
 

        spin = _adcs.spin() 
 

        return Spin(x=spin[0],y=spin[1],z=spin[2]) 
 

         
 

    ''' 
 

    query { 
 

        telemetry { 
 

            orientation { x y z yaw pitch roll } 
 

            spin { x y z } 
 

            mode { state } 
 

            power { state } 
 

        } 
 

    } 
 

    ''' 
 

    telemetry = graphene.Field(Telemetry) 
 

    def resolve_telemetry(self, info): 
 

        mode = _adcs.mode() 
 

        power = _adcs.power() 
 

 
 



   
 

   
 

 

        o = _adcs.orientation() 
 

        orientation = Orientation(x=o[0],y=o[1],z=o[2],yaw=o[3],pitch=o[4],roll=o[5]) 
 

         
 

        spin = _adcs.spin() 
 

        spin = Spin(x=spin[0],y=spin[1],z=spin[2]) 
 

 
  

        return Telemetry(   ModeState(state=mode), 
 

                            PowerState(state=power), 
 

                            orientation, 
 

                            spin 
 

        ) 
 

 
  

############## MUTATIONS ################ 
 

 
  

''' 
 

mutation { 
 

    controlPower(controlPowerInput: {power: OFF}) { 
 

        success 
 

        errors 
 

        } 
 

    } 
 

''' 
 

class ControlPower(graphene.Mutation): 
 

    class Arguments: 
 

        controlPowerInput = ControlPowerInput() 
 

 
  

    Output = Result 
 

    def mutate(self, info, controlPowerInput): 



   
 

   
 

 

        success, errors = _adcs.controlPower(controlPowerInput) 
 

        return Result(success=success, errors=errors) 
 

 
  

''' 
 

mutation { 
 

    setMode(setModeInput: {mode: DETUMBLE}) { 
 

        errors 
 

        success 
 

    } 
 

} 
 

''' 
 

class SetMode(graphene.Mutation): 
 

    class Arguments: 
 

        setModeInput = SetModeInput() 
 

 
  

    Output = Result 
 

    def mutate(self, info, setModeInput): 
 

        success, errors = _adcs.setMode(setModeInput) 
 

        return Result(success=success, errors=errors) 
 

 
  

''' 
 

type Mutation { 
 

    controlPower( 
 

        input: ControlPowerInput! 
 

    ): ControlPower 
 

    setMode( 
 

        input: SetModeInput! 
 

    ): SetMode 



   
 

   
 

 

} 
 

''' 
 

class Mutation(graphene.ObjectType): 
 

    controlPower = ControlPower.Field() 
 

    setMode = SetMode.Field() 
 

 
  

schema = graphene.Schema(query=Query, mutation=Mutation) 

 

EPS SERVICE 

service.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate service code which reads the config file and starts up the 
 

GraphQL/HTTP endpoint. (should not need to much modification) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import logging 
 

 
  

from service import schema 
 

from kubos_service.config import Config 
 

from logging.handlers import SysLogHandler 
 

import sys 



   
 

   
 

 

 
  

config = Config("eps-service") 
 

 
  

# Setup logging 
 

logger = logging.getLogger("eps-service") 
 

logger.setLevel(logging.DEBUG) 
 

handler = SysLogHandler(address='/dev/log', facility=SysLogHandler.LOG_DAEMON) 
 

formatter = logging.Formatter('eps-service: %(message)s') 
 

handler.formatter = formatter 
 

logger.addHandler(handler) 
 

 
  

# Set up a handler for logging to stdout 
 

stdout = logging.StreamHandler(stream=sys.stdout) 
 

stdout.setFormatter(formatter) 
 

logger.addHandler(stdout) 
 

 
  

from kubos_service import http_service 
 

# Start an http service 
 

http_service.start(config, schema.schema) 
 

 
  

#from kubos_service import udp_service 
 

 
  

# Start a udp service with optional context 
 

# udp_service.start(config, schema, {'bus': '/dev/ttyS3'}) 
 

 
  

# Start a udp service 
 

#udp_service.start(logger, config, schema) 

 

app.py 



   
 

   
 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate Flask setup for service application (should not be modified) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

from flask import Flask 
 

from flask_graphql import GraphQLView 
 

from .schema import schema 
 

 
  

 
  

def create_app(): 
 

    """ 
 

    Creates graphql and graphiql endpoints 
 

    """ 
 

 
  

    app = Flask(__name__) 
 

    app.debug = True 
 

 
  

    app.add_url_rule( 
 

        '/', 
 

        view_func=GraphQLView.as_view( 
 

            'graphql', 
 

            schema=schema, 



   
 

   
 

 

            graphiql=False 
 

        ) 
 

    ) 
 

 
  

    app.add_url_rule( 
 

        '/graphiql', 
 

        view_func=GraphQLView.as_view( 
 

            'graphiql', 
 

            schema=schema, 
 

            graphiql=True 
 

        ) 
 

    ) 
 

 
  

    return app 

 

models.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Graphene ObjectType classes for subsystem modeling. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 



   
 

   
 

 

 
  

import graphene 
 

import serial 
 

 
  

class PowerEnum(graphene.Enum): 
 

    OFF = 0 
 

    ON = 1 
 

 
  

class PortEnum(graphene.Enum): 
 

    PORT1 = 1 
 

    PORT2 = 2 
 

    PORT3 = 3 
 

 
  

class PowerState(graphene.ObjectType): 
 

    power1 = graphene.Field(PowerEnum) 
 

    power2 = graphene.Field(PowerEnum) 
 

    power3 = graphene.Field(PowerEnum) 
 

 
  

class ControlPortInput(graphene.InputObjectType): 
 

    power = graphene.Field(PowerEnum) 
 

    port = graphene.Field(PortEnum)  
 

 
  

class Result(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

 
  

class Telemetry(graphene.ObjectType): 
 

    power = graphene.Field(PowerState) 



   
 

   
 

 

    battery = graphene.Float() 

 

schema.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Graphene schema setup to enable queries. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

from .models import * 
 

 
  

from obcapi import eps 
 

 
  

_eps = eps.EPS() 
 

 
  

''' 
 

type Query { 
 

    ping(): pong 
 

    power(): PowerState 
 

    telemetry(): Telemetry 
 

    battery(): Float 
 

} 



   
 

   
 

 

''' 
 

class Query(graphene.ObjectType): 
 

 
  

    ''' 
 

    query { 
 

        ping 
 

    } 
 

    ''' 
 

    ping = graphene.String() 
 

    def resolve_ping(self, info): 
 

        return _eps.ping() 
 

 
  

    ''' 
 

    query { 
 

        battery 
 

    } 
 

    ''' 
 

    battery = graphene.Int() 
 

    def resolve_battery(self, info): 
 

        return _eps.battery() 
 

 
  

    ''' 
 

    query { 
 

        power {  
 

            power1 
 

            power2 
 

            power3 
 

        } 



   
 

   
 

 

    } 
 

    ''' 
 

    power = graphene.Field(PowerState) 
 

    def resolve_power(self, info): 
 

        power1, power2, power3 = _eps.power() 
 

        return PowerState(power1=power1, power2=power2, power3=power3) 
 

 
  

    ''' 
 

    query { 
 

        telemetry {  
 

            power { 
 

                power1 
 

                power2 
 

                power3 
 

            } 
 

            battery 
 

        } 
 

    } 
 

    ''' 
 

    telemetry = graphene.Field(Telemetry) 
 

    def resolve_telemetry(self, info): 
 

        power1, power2, power3 = _eps.power() 
 

        battery_level = _eps.battery() 
 

        return Telemetry(power=PowerState(power1=power1, power2=power2, 

power3=power3), battery=battery_level) 
 

 
  

############## MUTATIONS ################ 
 

''' 
 

mutation { 



   
 

   
 

 

    controlPort(controlPortInput: { 
 

                power: ON 
 

                port: 1 }) 
 

    { 
 

    errors 
 

    success 
 

    } 
 

} 
 

''' 
 

class ControlPort(graphene.Mutation): 
 

    class Arguments: 
 

        controlPortInput = ControlPortInput() 
 

 
  

    Output = Result 
 

    def mutate(self, info, controlPortInput): 
 

        if (_eps.controlPort(controlPortInput)): 
 

            return Result(success=True, errors=[]) 
 

        else: 
 

            return Result(success=False, errors=["Invalid port number: 

{}".format(controlPortInput.port)]) 
 

 
  

#################################################################### 
 

''' 
 

type Mutation { 
 

    controlPort( 
 

        input: ControlPowerInput! 
 

    ): Result 
 

} 
 

''' 



   
 

   
 

 

class Mutation(graphene.ObjectType): 
 

    controlPort = ControlPort.Field() 
 

 
  

schema = graphene.Schema(query=Query, mutation=Mutation) 

 

PAYLOAD SERVICE 

service.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate service code which reads the config file and starts up the 
 

GraphQL/HTTP endpoint. (should not need to much modification) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import logging 
 

 
  

from service import schema 
 

from logging.handlers import SysLogHandler 
 

import sys 
 

#import toml 
 

 
  

#print("hello") 
 

from kubos_service.config import Config 



   
 

   
 

 

config = Config("payload-service") 
 

#print(toml.dumps(config)) 
 

 
  

# Setup logging 
 

logger = logging.getLogger("payload-service") 
 

logger.setLevel(logging.DEBUG) 
 

handler = SysLogHandler(address='/dev/log', facility=SysLogHandler.LOG_DAEMON) 
 

formatter = logging.Formatter('payload-service: %(message)s') 
 

handler.formatter = formatter 
 

logger.addHandler(handler) 
 

 
  

# Set up a handler for logging to stdout 
 

stdout = logging.StreamHandler(stream=sys.stdout) 
 

stdout.setFormatter(formatter) 
 

logger.addHandler(stdout) 
 

 
  

from kubos_service import http_service 
 

# Start an http service 
 

http_service.start(config, schema.schema) 
 

 
  

#from kubos_service import udp_service 
 

 
  

# Start a udp service with optional context 
 

# udp_service.start(config, schema, {'bus': '/dev/ttyS3'}) 
 

 
  

# Start a udp service 
 

#udp_service.start(logger, config, schema) 

 

app.py 



   
 

   
 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate Flask setup for service application (should not be modified) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

from flask import Flask 
 

from flask_graphql import GraphQLView 
 

from .schema import schema 
 

 
  

 
  

def create_app(): 
 

    """ 
 

    Creates graphql and graphiql endpoints 
 

    """ 
 

 
  

    app = Flask(__name__) 
 

    app.debug = True 
 

 
  

    app.add_url_rule( 
 

        '/', 
 

        view_func=GraphQLView.as_view( 
 

            'graphql', 
 

            schema=schema, 



   
 

   
 

 

            graphiql=False 
 

        ) 
 

    ) 
 

 
  

    app.add_url_rule( 
 

        '/graphiql', 
 

        view_func=GraphQLView.as_view( 
 

            'graphiql', 
 

            schema=schema, 
 

            graphiql=True 
 

        ) 
 

    ) 
 

 
  

    return app 

 

models.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Graphene ObjectType classes for subsystem modeling. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 



   
 

   
 

 

 
  

class Result(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 

 

schema.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

from .models import * 
 

from obcapi import payload 
 

 
  

_payload = payload.Payload() 
 

 
  

''' 
 

type Query { 
 

    ping(): String 
 

} 
 

''' 
 

class Query(graphene.ObjectType): 
 

 
 



   
 

   
 

 

    ''' 
 

    { 
 

        ping 
 

    } 
 

    ''' 
 

    ping = graphene.String() 
 

    def resolve_ping(self, info): 
 

        return _payload.ping() 
 

 
  

''' 
 

mutation { 
 

    image_capture() { 
 

        success 
 

        errors 
 

    } 
 

} 
 

''' 
 

class ImageTransfer(graphene.Mutation): 
 

    Output = Result 
 

    def mutate(self, info): 
 

        # should send hardware command to payload to start image transfer 
 

        success, errors = _payload.image_transfer() 
 

        # return results 
 

        return Result(success=success, errors=errors) 
 

 
  

''' 
 

mutation { 
 

    image_transfer() { 



   
 

   
 

 

        success 
 

        errors 
 

    } 
 

} 
 

''' 
 

class ImageCapture(graphene.Mutation): 
 

    Output = Result 
 

    def mutate(self, info): 
 

        # should send hardware command to payload to start image capture 
 

        success, errors = _payload.image_capture() 
 

        # return results 
 

        return Result(success=success, errors=errors) 
 

 
  

''' 
 

type Mutation { 
 

    imageCapture(): Result 
 

    imageTransfer(): Result 
 

} 
 

''' 
 

class Mutation(graphene.ObjectType): 
 

    imageCapture = ImageCapture.Field() 
 

    imageTransfer = ImageTransfer.Field() 
 

 
  

schema = graphene.Schema(query=Query, mutation=Mutation) 

 

RADIO SERVICE 

service.py 

  



   
 

   
 

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Boilerplate service code which reads the config file and starts up the 
 

GraphQL/HTTP endpoint. (should not need to much modification) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import logging 
 

 
  

from service import schema 
 

from logging.handlers import SysLogHandler 
 

import sys 
 

#import toml 
 

 
  

#print("hello") 
 

from kubos_service.config import Config 
 

config = Config("radio-service") 
 

#print(toml.dumps(config)) 
 

 
  

# Setup logging 
 

logger = logging.getLogger("radio-service") 
 

logger.setLevel(logging.DEBUG) 
 

handler = SysLogHandler(address='/dev/log', facility=SysLogHandler.LOG_DAEMON) 



   
 

   
 

 

formatter = logging.Formatter('radio-service: %(message)s') 
 

handler.formatter = formatter 
 

logger.addHandler(handler) 
 

 
  

# Set up a handler for logging to stdout 
 

stdout = logging.StreamHandler(stream=sys.stdout) 
 

stdout.setFormatter(formatter) 
 

logger.addHandler(stdout) 
 

 
  

from kubos_service import http_service 
 

# Start an http service 
 

http_service.start(config, schema.schema) 
 

 
  

#from kubos_service import udp_service 
 

 
  

# Start a udp service with optional context 
 

# udp_service.start(config, schema, {'bus': '/dev/ttyS3'}) 
 

 
  

# Start a udp service 
 

#udp_service.start(logger, config, schema) 

 

app.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate Flask setup for service application (should not be modified) 
 

""" 



   
 

   
 

 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

from flask import Flask 
 

from flask_graphql import GraphQLView 
 

from .schema import schema 
 

 
  

 
  

def create_app(): 
 

    """ 
 

    Creates graphql and graphiql endpoints 
 

    """ 
 

 
  

    app = Flask(__name__) 
 

    app.debug = True 
 

 
  

    app.add_url_rule( 
 

        '/', 
 

        view_func=GraphQLView.as_view( 
 

            'graphql', 
 

            schema=schema, 
 

            graphiql=False 
 

        ) 
 

    ) 
 

 
  

    app.add_url_rule( 



   
 

   
 

 

        '/graphiql', 
 

        view_func=GraphQLView.as_view( 
 

            'graphiql', 
 

            schema=schema, 
 

            graphiql=True 
 

        ) 
 

    ) 
 

 
  

    return app 

 

models.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Graphene ObjectType classes for subsystem modeling. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

 
  

class Result(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

 
 



   
 

   
 

 

class MessageResult(graphene.ObjectType): 
 

    message = graphene.String() 
 

    result = graphene.Field(Result) 

 

schema.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import threading 
 

import graphene 
 

from .models import * 
 

from obcapi import radio 
 

 
  

# initialize radio - sync word from astrodev datasheet 
 

_radio = radio.RADIO(sync_word=b"\x48\x65") 
 

 
  

# start radio read thread for constantly receiving and handling any incoming packets 
 

read_thread = threading.Thread(target=_radio.main()) 
 

read_thread.start() 
 

 
  

''' 
 

type Query { 



   
 

   
 

 

    ping(): String 
 

} 
 

''' 
 

class Query(graphene.ObjectType): 
 

 
  

    ''' 
 

    { 
 

        ping 
 

    } 
 

    ''' 
 

    ping = graphene.String() 
 

    def resolve_ping(self, info): 
 

        return _radio.ping() 
 

 
  

    ''' 
 

    { 
 

        read { 
 

            buffer 
 

            success 
 

            errors 
 

        } 
 

    } 
 

    ''' 
 

    read = graphene.Field(MessageResult) 
 

    def resolve_read(self, info): 
 

        # should send hardware a ping and expect a pong back 
 

        buffer = _radio.receive() 
 

        success = True 



   
 

   
 

 

        errors = [] 
 

        # return results 
 

        result = Result(success=success, errors=errors) 
 

        return MessageResult(message=buffer, result=result) 
 

 
  

''' 
 

mutation { 
 

    image_transfer() { 
 

        success 
 

        errors 
 

    } 
 

} 
 

''' 
 

class ImageTransfer(graphene.Mutation): 
 

    Output = Result 
 

    def mutate(self, info): 
 

        # should send hardware command to payload to start image transfer 
 

        success, errors = _radio.image_transfer() 
 

        # return results 
 

        return Result(success=success, errors=errors) 
 

 
  

''' 
 

type Mutation { 
 

    imageTransfer(): Result 
 

} 
 

''' 
 

class Mutation(graphene.ObjectType): 
 

    imageTransfer = ImageTransfer.Field() 



   
 

   
 

 

 
  

schema = graphene.Schema(query=Query, mutation=Mutation) 

 

IMU SERVICE 

service.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate service code which reads the config file and starts up the 
 

GraphQL/HTTP endpoint. (should not need to much modification) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import logging 
 

 
  

from service import schema 
 

from kubos_service.config import Config 
 

from logging.handlers import SysLogHandler 
 

import sys 
 

 
  

config = Config("imu-service") 
 

 
  

# Setup logging 
 

logger = logging.getLogger("imu-service") 



   
 

   
 

 

logger.setLevel(logging.DEBUG) 
 

handler = SysLogHandler(address='/dev/log', facility=SysLogHandler.LOG_DAEMON) 
 

formatter = logging.Formatter('imu-service: %(message)s') 
 

handler.formatter = formatter 
 

logger.addHandler(handler) 
 

 
  

# Set up a handler for logging to stdout 
 

stdout = logging.StreamHandler(stream=sys.stdout) 
 

stdout.setFormatter(formatter) 
 

logger.addHandler(stdout) 
 

 
  

from kubos_service import http_service 
 

# Start an http service 
 

http_service.start(config, schema.schema) 
 

 
  

#from kubos_service import udp_service 
 

 
  

# Start a udp service with optional context 
 

# udp_service.start(config, schema, {'bus': '/dev/ttyS3'}) 
 

 
  

# Start a udp service 
 

#udp_service.start(logger, config, schema) 

 

app.py 

#!/usr/bin/env 

python3 
 

 
  

""" 



   
 

   
 

 

Boilerplate Flask setup for service application (should not be modified) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

from flask import Flask 
 

from flask_graphql import GraphQLView 
 

from .schema import schema 
 

 
  

 
  

def create_app(): 
 

    """ 
 

    Creates graphql and graphiql endpoints 
 

    """ 
 

 
  

    app = Flask(__name__) 
 

    app.debug = True 
 

 
  

    app.add_url_rule( 
 

        '/', 
 

        view_func=GraphQLView.as_view( 
 

            'graphql', 
 

            schema=schema, 
 

            graphiql=False 
 

        ) 
 

    ) 



   
 

   
 

 

 
  

    app.add_url_rule( 
 

        '/graphiql', 
 

        view_func=GraphQLView.as_view( 
 

            'graphiql', 
 

            schema=schema, 
 

            graphiql=True 
 

        ) 
 

    ) 
 

 
  

    return app 

 

models.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Graphene ObjectType classes for subsystem modeling. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

import serial 
 

import time 
 

import app_api 



   
 

   
 

 

import struct 
 

from winserial import i2c 
 

import logging 
 

import smbus 
 

 
  

class Result(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

 
  

class Accelerometer(graphene.ObjectType): 
 

    x = graphene.Float() 
 

    y = graphene.Float() 
 

    z = graphene.Float() 
 

 
  

class Magnetometer(graphene.ObjectType): 
 

    x = graphene.Float() 
 

    y = graphene.Float() 
 

    z = graphene.Float() 
 

 
  

class Gyroscope(graphene.ObjectType): 
 

    x = graphene.Float() 
 

    y = graphene.Float() 
 

    z = graphene.Float() 
 

 
  

class Quaternion(graphene.ObjectType): 
 

    q1 = graphene.Float() 
 

    q2 = graphene.Float() 
 

    q3 = graphene.Float() 



   
 

   
 

 

    q4 = graphene.Float() 
 

 
  

class AccelerometerResult(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

    accData = graphene.Field(Accelerometer) 
 

 
  

class MagnetometerResult(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

    magData = graphene.Field(Magnetometer) 
 

 
  

class GyroscopeResult(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

    gyrData = graphene.Field(Gyroscope) 
 

 
  

class QuaternionResult(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

    quaData = graphene.Field(Quaternion) 

 

schema.py 

#!/usr/bin/env 

python3 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 



   
 

   
 

 

__license__ = "MIT" 
 

 
  

import graphene 
 

from .models import * 
 

from winapi import imu 
 

 
  

_imu = imu.IMU(bus=2) 
 

 
  

''' 
 

type Query { 
 

    mag(): MagResult 
 

    acc(): AccResult 
 

    gyr(): GyrResult 
 

    qua(): QuaResult 
 

} 
 

''' 
 

class Query(graphene.ObjectType): 
 

 
  

    ''' 
 

    query { 
 

        mag 
 

    } 
 

    ''' 
 

    mag = graphene.Field(MagnetometerResult) 
 

    def resolve_mag(self, info): 
 

        success, errors, x, y, z = _imu.mag() 
 

        return MagnetometerResult(success=success, errors=errors, 

magData=Magnetometer(x=x, y=y, z=z)) 
 

 
 



   
 

   
 

 

 
  

    ''' 
 

    query { 
 

        acc 
 

    } 
 

    ''' 
 

    acc = graphene.Field(AccelerometerResult) 
 

    def resolve_acc(self, info): 
 

        success, errors, x, y, z = _imu.acc() 
 

        return AccelerometerResult(success=success, errors=errors, 

accData=Accelerometer(x=x, y=y, z=z)) 
 

 
  

    ''' 
 

    query { 
 

        gyr 
 

    } 
 

    ''' 
 

    gyr = graphene.Field(GyroscopeResult) 
 

    def resolve_gyr(self, info): 
 

        success, errors, x, y, z = _imu.gyr() 
 

        return GyroscopeResult(success=success, errors=errors, 

gyrData=Gyroscope(x=x, y=y, z=z)) 
 

 
  

    ''' 
 

    query { 
 

        qua 
 

    } 
 

    ''' 
 

    qua = graphene.Field(QuaternionResult) 



   
 

   
 

 

    def resolve_qua(self, info): 
 

        success, errors, q1, q2, q3, q4 = _imu.qua() 
 

        return QuaternionResult(success=success, errors=errors, 

quaData=Quaternion(q1=q1,q2=q2,q3=q3,q4=q4)) 
 

 
  

schema = graphene.Schema(query=Query) 

 

RTC SERVICE 

service.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Boilerplate service code which reads the config file and starts up the 
 

GraphQL/HTTP endpoint. (should not need to much modification) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import logging 
 

 
  

from service import schema 
 

from logging.handlers import SysLogHandler 
 

import sys 



   
 

   
 

 

#import toml 
 

 
  

#print("hello") 
 

from kubos_service.config import Config 
 

config = Config("rtc-service") 
 

#print(toml.dumps(config)) 
 

 
  

# Setup logging 
 

logger = logging.getLogger("rtc-service") 
 

logger.setLevel(logging.DEBUG) 
 

handler = SysLogHandler(address='/dev/log', facility=SysLogHandler.LOG_DAEMON) 
 

formatter = logging.Formatter('rtc-service: %(message)s') 
 

handler.formatter = formatter 
 

logger.addHandler(handler) 
 

 
  

# Set up a handler for logging to stdout 
 

stdout = logging.StreamHandler(stream=sys.stdout) 
 

stdout.setFormatter(formatter) 
 

logger.addHandler(stdout) 
 

 
  

from kubos_service import http_service 
 

# Start an http service 
 

http_service.start(config, schema.schema) 
 

 
  

#from kubos_service import udp_service 
 

 
  

# Start a udp service with optional context 
 

# udp_service.start(config, schema, {'bus': '/dev/ttyS3'}) 



   
 

   
 

 

 
  

# Start a udp service 
 

#udp_service.start(logger, config, schema) 

 

app.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Boilerplate Flask setup for service application (should not be modified) 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

from flask import Flask 
 

from flask_graphql import GraphQLView 
 

from .schema import schema 
 

 
  

 
  

def create_app(): 
 

    """ 
 

    Creates graphql and graphiql endpoints 
 

    """ 
 

 
  

    app = Flask(__name__) 
 

    app.debug = True 



   
 

   
 

 

 
  

    app.add_url_rule( 
 

        '/', 
 

        view_func=GraphQLView.as_view( 
 

            'graphql', 
 

            schema=schema, 
 

            graphiql=False 
 

        ) 
 

    ) 
 

 
  

    app.add_url_rule( 
 

        '/graphiql', 
 

        view_func=GraphQLView.as_view( 
 

            'graphiql', 
 

            schema=schema, 
 

            graphiql=True 
 

        ) 
 

    ) 
 

 
  

    return app 

 

models.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Graphene ObjectType classes for subsystem modeling. 
 

""" 



   
 

   
 

 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

 
  

class Result(graphene.ObjectType): 
 

    errors = graphene.List(graphene.String) 
 

    success = graphene.Boolean() 
 

 
  

class RTCDateTime(graphene.ObjectType): 
 

    datetime = graphene.types.datetime.DateTime() 
 

    result = graphene.Field(Result) 

 

schema.py 

#!/usr/bin/env 

python3 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

from .models import * 
 

from obcapi import DS3231 
 

 
  

_rtc = DS3231.DS3231(2) 



   
 

   
 

 

 
  

class Query(graphene.ObjectType): 
 

 
  

    ''' 
 

    query { 
 

        ping 
 

    } 
 

    ''' 
 

    ping = graphene.String() 
 

    def resolve_ping(self, info): 
 

        return _rtc.ping() 
 

 
  

    ''' 
 

    type Query { 
 

        dateTime { 
 

            datetime 
 

                result { 
 

                    success 
 

                    errors 
 

            } 
 

        } 
 

    } 
 

    ''' 
 

    dateTime = graphene.Field(RTCDateTime) 
 

    def resolve_dateTime(self, info): 
 

        # should send hardware a ping and expect a pong back 
 

        _datetime = _rtc.datetime() 
 

        # set success to true and error to nothing as default for now 



   
 

   
 

 

        _success = True  
 

        _errors = [] 
 

 
  

        # return results 
 

        return RTCDateTime(result=Result(success=_success, errors=_errors), 

datetime=_datetime) 
 

 
  

schema = graphene.Schema(query=Query) 

KUBOS APPLICATIONS 

ADCS Applications 

get-adcs-mode.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that get the current power mode of ADCS (IDLE, DETUMBLE, 

POINTING). 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
 



   
 

   
 

 

    logger = app_api.logging_setup("get-adcs-mode") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
 



   
 

   
 

 

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' query { mode { state } } ''' 
 

    response = SERVICES.query(service="adcs-service", query=request) 
 

 
  

    # get results 
 

    result = response["mode"] 
 

    power = result['state'] 
 

    logger.info("Current ADCS mode state: {}".format(power)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

get-adcs-orientation.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Mission application that get the current orientation from ADCS module. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 



   
 

   
 

 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("get-adcs-orientation") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 



   
 

   
 

 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' query { orientation { x y z yaw pitch roll } } ''' 
 

    response = SERVICES.query(service="adcs-service", query=request) 
 

 
  

    # get results 
 

    result = response["orientation"] 
 

 
  

    x = result['x'] 
 

    y = result['y'] 
 

    z = result['z'] 
 

    yaw = result['yaw'] 
 

    pitch = result['pitch'] 
 

    roll = result['roll'] 
 

 
  

    logger.info("Current orientation ({},{},{},{},{},{})".format(x,y,z,yaw,pitch,roll)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 



   
 

   
 

get-adcs-mode.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that get the current power state of ADCS (ON, OFF, RESET). 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("get-adcs-power") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 



   
 

   
 

 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' query { power { state } } ''' 
 

    response = SERVICES.query(service="adcs-service", query=request) 
 

 
  

    # get results 
 

    result = response["power"] 
 

    power = result['state'] 



   
 

   
 

 

    logger.info("Current ADCS power state: {}".format(power)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

get-adcs-spin.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that get the current spin from ADCS module. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("get-adcs-spin") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 



   
 

   
 

 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' query { spin { x y z } } ''' 



   
 

   
 

 

    response = SERVICES.query(service="adcs-service", query=request) 
 

 
  

    # get results 
 

    result = response["spin"] 
 

 
  

    x = result['x'] 
 

    y = result['y'] 
 

    z = result['z'] 
 

 
  

    logger.info("Current spin: ({},{},{})".format(x,y,z)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

get-adcs-telemetry.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that collects the current telemetry from ADCS module. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 



   
 

   
 

 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("get-adcs-spin") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
 



   
 

   
 

 

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = '''      
 

    query { 
 

        telemetry { 
 

            orientation { x y z yaw pitch roll } 
 

            spin { x y z } 
 

            mode { state } 
 

            power { state } 
 

        } 
 

    } ''' 
 

    response = SERVICES.query(service="adcs-service", query=request) 
 

 
  

    # get results 
 

    result = response["telemetry"] 
 

 
  

    spin = result['spin'] 
 

    x_spin = spin['x'] 
 

    y_spin = spin['y'] 
 

    z_spin = spin['z'] 
 

 
  

    orientation = result['orientation'] 



   
 

   
 

 

    x = orientation['x'] 
 

    y = orientation['y'] 
 

    z = orientation['z'] 
 

    yaw = orientation['yaw'] 
 

    pitch = orientation['pitch'] 
 

    roll = orientation['roll'] 
 

 
  

    mode = result['mode'] 
 

    mode = mode['state'] 
 

 
  

    power = result['power'] 
 

    power = power['state'] 
 

 
  

    logger.info("Got ADCS telemetry:\n power={} mode={}\n 

orientation=({},{},{},{},{}.{})\n spin=({},{},{})".format( 
 

                power, 
 

                mode, 
 

                x,y,z,yaw,pitch,roll, 
 

                x_spin,y_spin,z_spin 
 

    )) 
 

 
  

    logger.info("Storing telemetry in ADCS database...") 
 

 
  

    # timestamp is optional and defaults to current system time 
 

    request = ''' 
 

    mutation { 
 

        insertBulk(entries: [ 
 

            { subsystem: "ADCS", parameter: "mode", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "power", value: "%s" }, 



   
 

   
 

 

            { subsystem: "ADCS", parameter: "x", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "y", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "z", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "yaw", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "pitch", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "roll", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "spin_x", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "spin_y", value: "%s" }, 
 

            { subsystem: "ADCS", parameter: "spin_z", value: "%s" } 
 

        ])  
 

        { 
 

            success 
 

            errors 
 

        } 
 

    } 
 

    ''' % (mode,power,x,y,z,yaw,pitch,roll,x_spin,y_spin,z_spin) 
 

    response = SERVICES.query(service="telemetry-service", query=request) 
 

 
  

    # get results 
 

    result = response["insertBulk"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    if success: 
 

        logger.info("Logged telemetry in database.") 
 

    else: 
 

        logger.warn("Unable to log telemetry to database: {}".format(errors)) 
 

 
 



   
 

   
 

 

if __name__ == "__main__": 
 

    main() 

 

ping-adcs.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that pings the ADCS service. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("ping-adcs") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 



   
 

   
 

 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    request = ''' query { ping } ''' 
 

    response = SERVICES.query(service="adcs-service", query=request) 
 

 
  

    # get results 



   
 

   
 

 

    result = response["ping"] 
 

 
  

    # check results 
 

    if "pong" == result: 
 

        logger.info("Success ping to ADCS service") 
 

    else: 
 

        logger.warn("Unable to ping ADCS service") 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

set-adcs-mode.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that sets the mode of the ADCS module (IDLE, DETUMBLE, 

POINTING). 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 



   
 

   
 

 

 
  

    logger = app_api.logging_setup("set-adcs-mode") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    parser.add_argument('mode') 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES, args.mode) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES, args.mode) 
 

    else: 
 

        on_command(logger, SERVICES, args.mode) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES, mode): 



   
 

   
 

 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES, mode): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' 
 

    mutation { 
 

        setMode(setModeInput: {mode: %s}) { 
 

            errors 
 

            success 
 

        } 
 

    } 
 

    ''' % (mode) 
 

    response = SERVICES.query(service="adcs-service", query=request) 
 

 
  

    # get results 
 

    result = response["setMode"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 
 

    if success: 
 

        logger.info("Set ADCS mode={}.".format(mode)) 
 

    else: 
 

        logger.warn("Unable to set ADCS mode={}: {}.".format(mode, errors)) 
 

 
  

if __name__ == "__main__": 



   
 

   
 

 

    main() 

 

set-adcs-power.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Mission application that sets the power state of the ADCS module (ON, OFF, RESET). 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("set-adcs-power") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 



   
 

   
 

 

    parser.add_argument('power') 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES, args.power) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES, args.power) 
 

    else: 
 

        on_command(logger, SERVICES, args.power) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES, power): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES, power): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' 



   
 

   
 

 

    mutation { 
 

        controlPower(controlPowerInput: {power: %s}) { 
 

            success 
 

            errors 
 

        } 
 

    } 
 

    ''' % (power) 
 

    response = SERVICES.query(service="adcs-service", query=request) 
 

 
  

    # get results 
 

    result = response["controlPower"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 
 

    if success: 
 

        logger.info("Set ADCS power={}.".format(power)) 
 

    else: 
 

        logger.warn("Unable to set ADCS power={}: {}.".format(power, errors)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

EPS Applications 

get-eps-telemetry.py 

#!/usr/bin/env 

python3 
 

 
 



   
 

   
 

 

""" 
 

Mission application that queries all telemetry from EPS module. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("get-eps-telemetry") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 



   
 

   
 

 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # collect EPS telemetry 
 

    try: 
 

        # send mutation to turn off EPS port 
 

        request = ''' 
 

        query { 
 

            telemetry { 
 

                power { 
 

                    power1 
 

                    power2 
 

                    power3 
 

                } 



   
 

   
 

 

                battery 
 

            } 
 

        } 
 

        ''' 
 

        response = SERVICES.query(service="eps-service", query=request) 
 

 
  

        # get results 
 

        telemetry = response["telemetry"] 
 

 
  

        power = telemetry["power"] 
 

        power1 = power["power1"] 
 

        power2 = power["power2"] 
 

        power3 = power["power3"] 
 

        battery = telemetry["battery"] 
 

 
  

        telemetry = [("power1", power1), ("power2", power2), ("power3", power3), 

("battery", battery)] 
 

        logger.info("Got EPS telemetry - Current power states: 1 = {} 2 = {} 3 = 

{} and battery level = {}. Storing in database...".format(power1, power2, power3, 

battery)) 
 

 
  

    except Exception as e: 
 

        logger.error("Error collecting EPS telemetry: 

{}:{}".format(type(e).__name__,str(e))) 
 

        sys.exit(1) 
 

 
  

    # add EPS telemetry to database 
 

    try: 
 

        # timestamp is optional and defaults to current system time 
 

        subsystem = "EPS" 



   
 

   
 

 

 
  

        for item in telemetry: 
 

            name = item[0] 
 

            value = item[1] 
 

 
  

            request = ''' 
 

            mutation { 
 

                insert(subsystem: "%s", parameter: "%s", value: "%s") { 
 

                    success 
 

                    errors 
 

                } 
 

            } 
 

            ''' % (subsystem, name, value) 
 

            response = SERVICES.query(service="telemetry-service", query=request) 
 

 
  

            # get results 
 

            result = response["insert"] 
 

            success = result["success"] 
 

            errors = result["errors"] 
 

 
  

            if success: 
 

                logger.info("Logged telemetry {}:{}={} in 

database.".format(subsystem, name, value)) 
 

            else: 
 

                logger.error("Unable to log telemetry {}:{}={} in database: 

{}.".format(subsystem, name, value, errors)) 
 

 
  

    except Exception as e: 



   
 

   
 

 

        logger.error("Error logging information in telemetry database: 

{}:{}".format(type(e).__name__,str(e))) 
 

        sys.exit(1) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

query-battery-level.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that queries the battery level (percentage) on EPS module. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("query-battery-level") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 



   
 

   
 

 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 



   
 

   
 

 

    request = ''' 
 

    query { 
 

        battery 
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="eps-service", query=request) 
 

 
  

    # get results 
 

    result = response["battery"] 
 

 
  

    # check results 
 

    logger.info("Current battery level: {}.".format(result)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

query-power-state.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that queries the power state of the ports on EPS module. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
 



   
 

   
 

 

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("query-power-state") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 



   
 

   
 

 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' 
 

    query { 
 

        power {  
 

            power1 
 

            power2 
 

            power3 
 

        } 
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="eps-service", query=request) 
 

 
  

    # get results 
 

    result = response["power"] 
 

    power1 = result["power1"] 
 

    power2 = result["power2"] 
 

    power3 = result["power3"] 
 

 
  

    # check results 



   
 

   
 

 

    logger.info("Current power states: 1 = {} 2 = {} 3 = {}.".format(power1, 

power2, power3)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

turn-port-off.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that turns off a output port on EPS module. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("turn-port-off") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 



   
 

   
 

 

    parser.add_argument('--config', '-c', nargs=1) 
 

    parser.add_argument('port', type=int) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES, args.port) 
 

    else: 
 

        on_command(logger, SERVICES, args.port) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES, port): 
 

     
 

    # send mutation to turn off EPS port 



   
 

   
 

 

    request = ''' 
 

    mutation { 
 

        controlPort(controlPortInput: { 
 

                    power: OFF 
 

                    port: PORT%d }) 
 

        { 
 

        errors 
 

        success 
 

        } 
 

    } 
 

    ''' % (port) 
 

    response = SERVICES.query(service="eps-service", query=request) 
 

 
  

    # get results 
 

    result = response["controlPort"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 
 

    if success: 
 

        logger.info("Turned off port {}.".format(port)) 
 

    else: 
 

        logger.warn("Uable to turn off port {}: {}.".format(port, errors)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

turn-port-on.py 



   
 

   
 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that turns on a output port on EPS module. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("turn-port-on") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    parser.add_argument('port', type=int) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 



   
 

   
 

 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES, args.port) 
 

    else: 
 

        on_command(logger, SERVICES, args.port) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES, port): 
 

     
 

    # send mutation to turn on EPS port 
 

    request = ''' 
 

    mutation { 
 

        controlPort(controlPortInput: { 
 

                    power: ON 
 

                    port: PORT%d }) 
 

        { 
 

        errors 



   
 

   
 

 

        success 
 

        } 
 

    } 
 

    ''' % (port) 
 

    response = SERVICES.query(service="eps-service", query=request) 
 

 
  

    # get results 
 

    result = response["controlPort"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 
 

    if success: 
 

        logger.info("Turned on port {}.".format(port)) 
 

    else: 
 

        logger.warn("Uable to turn on port {}: {}.".format(port, errors)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

PAYLOAD Applications 

payload-image-capture-transfer.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that requests an image capture and then transfers it from 

payload subsystem. 



   
 

   
 

 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("payload-image-capture-transfer") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/home/kubos/kubos/local_config.toml") 
 

 
 



   
 

   
 

 

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Starting image capture..") 
 

 
  

    time_1 = time.time() 
 

 
  

    # send request for image capture 
 

    request = ''' 
 

    mutation { 
 

        imageCapture { 
 

            success 
 

            errors 
 

        } 
 

    } 
 

    ''' 



   
 

   
 

 

    response = SERVICES.query(service="payload-service", query=request) 
 

 
  

    time_2 = time.time() 
 

 
  

    # get results 
 

    result = response["imageCapture"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 
 

    if success: 
 

        logger.info("Payload completed successful image capture.") 
 

    else: 
 

        logger.warn("Unsuccessful image capture request to payload: 

{}.".format(errors)) 
 

        sys.exit(1) 
 

 
  

    time.sleep(1) 
 

 
  

    logger.info("Starting image transfer..") 
 

 
  

    time_3 = time.time() 
 

 
  

    # send request for image transfer 
 

    request = ''' 
 

    mutation { 
 

        imageTransfer { 
 

            success 
 

            errors 



   
 

   
 

 

        } 
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="payload-service", query=request, 

timeout=100) 
 

 
  

    time_4 = time.time() 
 

 
  

    # get results 
 

    result = response["imageTransfer"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 
 

    if success: 
 

        logger.warn("Successful image transfer with payload.") 
 

    else: 
 

        logger.warn("Unable to complete image transfer with payload: 

{}.".format(errors)) 
 

        sys.exit(1) 
 

 
  

    # debug 
 

    logger.debug("Time for image capture: {}".format(time_2 - time_1)) 
 

    logger.debug("Time for image transfer: {}".format(time_4 - time_3)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

payload-image-capture.py 



   
 

   
 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that requests an image capture from payload subsystem. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("payload-image-capture") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 



   
 

   
 

 

        # else use default global config file 
 

        SERVICES = app_api.Services("/home/kubos/kubos/local_config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Starting image capture..") 
 

 
  

    # send request for image capture 
 

    request = ''' 
 

    mutation { 
 

        imageCapture { 
 

            success 
 

            errors 
 

        } 
 

    } 



   
 

   
 

 

    ''' 
 

    response = SERVICES.query(service="payload-service", query=request) 
 

 
  

    # get results 
 

    result = response["imageCapture"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 
 

    if success: 
 

        logger.info("Payload completed successful image capture.") 
 

    else: 
 

        logger.warn("Unsuccessful image capture request to payload: 

{}.".format(errors)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

payload-image-transfer.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that requests an image transfer from payload subsystem to 

OBC. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 



   
 

   
 

 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("payload-image-transfer") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/home/kubos/kubos/local_config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 



   
 

   
 

 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

 
  

    # send request for image capture 
 

    request = ''' 
 

    mutation { 
 

        imageTransfer { 
 

            success 
 

            errors 
 

        } 
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="payload-service", query=request) 
 

 
  

    # get results 
 

    result = response["imageTransfer"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 



   
 

   
 

 

    if success: 
 

        logger.warn("Successful image transfer with payload.") 
 

    else: 
 

        logger.warn("Unable to complete image transfer with payload: 

{}.".format(errors)) 
 

        sys.exit(1) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

payload-ping.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Mission application that pings the payload subsystem to check for successful connection. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 



   
 

   
 

 

 
  

    logger = app_api.logging_setup("payload-ping") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 



   
 

   
 

 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Starting nominal operation for payload subsystem...") 
 

 
  

    # pinging payload subsystem 
 

    request = ''' { 
 

        ping  
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="payload-service", query=request) 
 

 
  

    # get results 
 

    result = response["ping"] 
 

 
  

    # check results 
 

    if "pong"==result: 
 

        logger.info("Successful ping connection to payload.") 
 

    else: 
 

        logger.warn("Unsuccessful ping connection to payload: {}.".format(errors)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

RADIO Applications 

radio-image-transfer.py 

#!/usr/bin/env 

python3 



   
 

   
 

 

 
  

""" 
 

Mission application that transfers selfie-sat image to ground station using 

radio. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

from obcapi import radio 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("radio-ping") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 



   
 

   
 

 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    filename = "/home/kubos/image.jpg" 
 

     
 

    logger.info("Sending image {} to ground station...".format(filename)) 
 

 
  

    r = radio.RADIO() 
 

 
  

    r.downlink_image(filename) 
 

 
 



   
 

   
 

 

if __name__ == "__main__": 
 

    main() 

 

radio-ping.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that sends a ping to the ground station over radio. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("radio-ping") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 



   
 

   
 

 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Sending ping to ground station...") 
 

 
  

    # send request for image capture 
 

    request = ''' 
 

    query { 



   
 

   
 

 

        ping  
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="radio-service", query=request) 
 

 
  

    # get results 
 

    result = response["ping"] 
 

    success = result["success"] 
 

    errors = result["errors"] 
 

 
  

    # check results 
 

    if success: 
 

        logger.info("SUCCESS: Sent ping to ground station.") 
 

    else: 
 

        logger.warn("ERROR sending ping to ground station: {}.".format(errors)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

radio-read.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that sends reads incoming messages from the ground station 

over radio. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 



   
 

   
 

 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("radio-read") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 



   
 

   
 

 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Reading messages from ground station...") 
 

 
  

    while 1: 
 

        request = ''' 
 

        query { 
 

            read { 
 

                result { 
 

                    success 
 

                    errors 
 

                } 
 

                message 
 

            } 
 

        } 
 

        ''' 
 

        response = SERVICES.query(service="radio-service", query=request) 
 

 
 



   
 

   
 

 

        # get results 
 

        read = response["read"] 
 

        result = read["result"] 
 

        success = result["success"] 
 

        errors = result["errors"] 
 

        message = read["message"] 
 

 
  

        # check results 
 

        if success: 
 

            if message: 
 

                logger.info("SUCCESS: Got message from ground station: 

{}".format(message)) 
 

            else: 
 

                logger.info("Did not get anything from ground station. Trying 

again...") 
 

        else: 
 

            logger.warn("ERROR: Trying to read from ground station: 

{}.".format(errors)) 
 

 
  

        time.sleep(1) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

DEPLOYMENT Applications 

deployment-app.py 

  

  



   
 

   
 

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Deployment application that handles the deployment sequence. The Deployment 
 

sequence is made of 4 steps: 
 

    1) Keeping track of hold time required by launch provider 
 

    2) Deployment of deployables (solar panels, antenna, etc.) 
 

    3) Powering on radio and configuring appropriately for initial contact 
 

    4) Detumbling and stabilization of spacecraft 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import argparse 
 

import app_api 
 

import sys 
 

 
  

def on_boot(logger): 
 

    pass 
 

 
  

def on_command(logger): 
 

    pass 
 

 
  

    ''''''''''''''''''''''' STEP 1 - HOLD TIME TRACKING '''''''''''''''''''' 
 

    Hold time tracking done by U-boot environment variables. Two variables are used: 
 

        1) deployed: boolean True if satellite deployment already complete 



   
 

   
 

 

        2) deploy_start: string in seconds since unix epoch 
 

    (The U-Boot environment is a block of memory that is kept on persistent storage 
 

    and copied to RAM when U-Boot starts. It is used to store environment variables 
 

    which can be used to configure the system.) 
 

    ''' 
 

        # set system time from real-time clock from OBC 
 

 
  

        # if (deployed) 
 

        #   complete recurring boot tasks 
 

        # else 
 

        #   check "deploy_start" has a value 
 

        #   yes: 
 

        #       resume from "deploy_start" time 
 

        #   no: 
 

        #       set "deploy_start" 
 

        #       begin timer 
 

        #   once timer ends... 
 

        #   check deployment tasks 
 

        #   set "deployed" to True if successful 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("deployment-app") 
 

 
  

    parser = argparse.ArgumentParser() 
 

 
  

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 



   
 

   
 

 

    parser.add_argument('cmd_args', nargs='*') 
 

 
  

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        global SERVICES 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        SERVICES = app_api.Services() 
 

 
  

    if args.run[0] == 'OnBoot': 
 

        on_boot(logger) 
 

    elif args.run[0] == 'OnCommand': 
 

        on_command(logger) 
 

    else: 
 

        logger.error("Unknown run level specified") 
 

        sys.exit(1) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

HEALTH Applications 

health-mem-check.py 

#!/usr/bin/env 

python3 
 

 
  

""" 



   
 

   
 

 

Checks current memory usage. If memory usage more than certain amount, enter 

critical mode 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("health-mem-check") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 



   
 

   
 

 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    # retrieve memory telemetry from database 
 

    try: 
 

        ''' 
 

        query { 
 

            telemetry(timestampGe: Float, timestampLe: Float, subsystem: String, 

parameter: String, parameters: [String], limit: Integer): [{ 
 

                timestamp 
 

                subsystem 
 

                parameter 
 

                value 
 

            }] 
 

        } 
 

        timestampGe = return entries with timestamps on or after given value 



   
 

   
 

 

        timestampLe = return entries with timestamps on or before given value 
 

        subsystem = return entries that match subsystem name 
 

        parameter = return entries which match given parameter name (mutually 

exclusive with parameters) 
 

        parameters = returns entries which match given parameter names (mutually 

exclusive with parameter) 
 

        limit = return only first n entries found 
 

        ''' 
 

 
  

        request = ''' 
 

        { 
 

            telemetry(parameter: "free_memory_percentage") { 
 

                timestamp 
 

                subsystem 
 

                parameter 
 

                value 
 

            } 
 

        } 
 

        ''' 
 

        response = SERVICES.query(service="telemetry-service", query=request) 
 

        # get results 
 

        result = response["telemetry"] 
 

        for item in result: 
 

            timestamp = item["timestamp"] 
 

            subsystem = item["subsystem"] 
 

            parameter = item["parameter"] 
 

            value = item["value"] 
 

 
 



   
 

   
 

 

            #logger.debug("Got telemetry:{} | timestamp:{} | subsystem:{} | 

value:{}".format(parameter, timestamp, subsystem, value)) 
 

 
  

            threshold = 10.0 
 

            if (float(value) < threshold): 
 

                logger.error("Available memory: {} at {} below threshold: {}. 

Enter critical mode.".format(value, timestamp, threshold)) 
 

             
 

                # send mutation to activate critical mode 
 

                mode = "critical" 
 

                request = ''' 
 

                mutation { 
 

                    activateMode(name: "%s") { 
 

                        success 
 

                        errors 
 

                    } 
 

                }''' % (mode) 
 

                response = SERVICES.query(service="scheduler-service", 

query=request) 
 

 
  

                # get results 
 

                response = response["activateMode"] 
 

                success = response["success"] 
 

                errors = response["errors"] 
 

 
  

                if success: 
 

                    logger.info("Activtated mode named: {}.".format(mode)) 
 

                else: 
 

                    logger.warning("Could not activate {} mode: {}.".format(mode, 

errors)) 



   
 

   
 

 

                 
 

                break 
 

 
  

    except Exception as e: 
 

        logger.error("Unable to retrieve memory telemetry from database: 

{}{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

health-mem-query.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that retrieves current memory usage. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
 



   
 

   
 

 

    logger = app_api.logging_setup("health-mem-query") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
 



   
 

   
 

 

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    # get current memory usage 
 

    try: 
 

        logger.info("Getting current memory usage...") 
 

 
  

        # total = total usable RAM 
 

        # free = toal amount of free memory (includes lowFree) 
 

        # available = estimate how much memory is available for starting new 

applications, without swapping 
 

        # lowFree = amount of free memory which can be used by the kernel 
 

        request = '''  
 

        { 
 

            memInfo { 
 

                total 
 

                free 
 

            } 
 

        } 
 

        ''' 
 

        response = SERVICES.query(service="monitor-service", query=request) 
 

 
  

        # get results 
 

        result = response["memInfo"] 
 

        total = int(result["total"]) 
 

        free = int(result["free"]) 
 

 
  

        free_memory_percentage = round(free/total * 100, 1) 
 

 
 



   
 

   
 

 

        logger.info("Total free memory available: 

{}%".format(free_memory_percentage)) 
 

 
  

    except Exception as e: 
 

        logger.error("Error retrieving memory information from monitor service: 

{}".format(str(e))) 
 

        sys.exit(1) 
 

 
  

    # add memory telemetry to database 
 

    try: 
 

        # timestamp is optional and defaults to current system time 
 

        request = ''' 
 

        mutation { 
 

            insert(subsystem: "CDH", parameter: "free_memory_percentage", value: 

"%s") { 
 

                success 
 

                errors 
 

            } 
 

        } 
 

        ''' % (free_memory_percentage) 
 

        response = SERVICES.query(service="telemetry-service", query=request) 
 

 
  

        # get results 
 

        result = response["insert"] 
 

        success = result["success"] 
 

        errors = result["errors"] 
 

 
  

        if success: 
 

            logger.info("Logged memory telemetry in database.") 



   
 

   
 

 

        else: 
 

            logger.warn("Unable to log memory telemetry to database: 

{}".format(errors)) 
 

 
  

    except Exception as e: 
 

        logger.error("Error logging memory information in telemetry database: 

{}{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

health-ping-service.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Health mission application that pings every hardware service at intervals to 

notify of system issues/failures. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
 



   
 

   
 

 

def main(): 
 

 
  

    logger = app_api.logging_setup("health-ping-services") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 



   
 

   
 

 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # ping ADCS service 
 

    try: 
 

        request = ''' query { ping } ''' 
 

        response = SERVICES.query(service="adcs-service", query=request) 
 

        if "pong" == response["ping"]: 
 

            logger.info("Success pinging ADCS service") 
 

        else: 
 

            logger.warn("Unable to ping ADCS service") 
 

    except Exception as e: 
 

        logger.error("Exception trying to ping ADCS service: 

{}{}".format(type(e).__name__,str(e))) 
 

 
  

    # ping EPS service 
 

    try: 
 

        request = ''' query { ping } ''' 
 

        response = SERVICES.query(service="eps-service", query=request) 
 

        if "pong" == response["ping"]: 
 

            logger.info("Success pinginG EPS service") 
 

        else: 
 

            logger.warn("Unable to ping EPS service") 
 

    except Exception as e: 
 

        logger.error("Exception trying to ping EPS service: 

{}{}".format(type(e).__name__,str(e))) 
 

 
 



   
 

   
 

 

    # ping Payload service 
 

    try: 
 

        request = ''' query { ping } ''' 
 

        response = SERVICES.query(service="payload-service", query=request) 
 

        if "pong" == response["ping"]: 
 

            logger.info("Success pinging payload service") 
 

        else: 
 

            logger.warn("Unable to ping payload service") 
 

    except Exception as e: 
 

        logger.error("Exception trying to ping payload service: 

{}{}".format(type(e).__name__,str(e))) 
 

 
  

    # ping Radio service 
 

    try: 
 

        request = ''' query { ping } ''' 
 

        response = SERVICES.query(service="radio-service", query=request) 
 

        if "pong" == response["ping"]: 
 

            logger.info("Success pinging radio service") 
 

        else: 
 

            logger.warn("Unable to ping radio service") 
 

    except Exception as e: 
 

        logger.error("Exception trying to ping radio service: 

{}{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

health-ps-query.py 



   
 

   
 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that pings the payload subsystem to check for successful 

connection. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("payload-ping") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 



   
 

   
 

 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Starting nominal operation for payload subsystem...") 
 

 
  

    ''' 
 

    { 
 

        ps(pids: [Int!] = null): [ 
 

            { 
 

                pid: Int!       - process ID 
 

                uid: Int        - user ID who created the process 
 

                gid: Int        - group ID who created the process 



   
 

   
 

 

                usr: String     - username associated with UID 
 

                grp: String     - group name associated with the GID 
 

                state: String   - single character indicating process state 

(refer to ps state code manual) 
 

                ppid: Int       - process ID of process which started the process 
 

                mem: Int        - virtual memory of process (bytes) 
 

                rss: Int        - current number of pages process has in real 

memory 
 

                threads: Int    - number of threads in process 
 

                cmd: String     - full command used to execute the process 

(defaults to filename) 
 

            } 
 

        ] 
 

    } 
 

    ''' 
 

 
  

    # pinging payload subsystem 
 

 
  

    request = '''  
 

    { 
 

        ps(pids: [30972]) { 
 

            pid, 
 

            state, 
 

            ppid, 
 

            threads, 
 

            cmd 
 

        } 
 

    } 
 

    ''' 



   
 

   
 

 

    response = SERVICES.query(service="monitor-service", query=request) 
 

 
  

    # get results 
 

    print(response) 
 

    result = response["ps"][0] 
 

    pid = result["pid"] 
 

    state = result["state"] 
 

    ppid = result["ppid"] 
 

    threads = result["threads"] 
 

    cmd = result["cmd"] 
 

 
  

    logger.info("Got the following information about PID:{} | State:{} | CMD:{} | 

Threads:{}".format(pid,state,cmd,threads)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

IMU Applications 

Imu-read-acc.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that reads accelerometer data from imu 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 



   
 

   
 

 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("imu-read-acc") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    parser.add_argument('cmd_args', nargs='*') 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 



   
 

   
 

 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Querying acceleromter data from IMU...") 
 

 
  

    try: 
 

        request = ''' 
 

        {  
 

            acc { 
 

                success 
 

                errors 
 

                accData { 
 

                    x 
 

                    y 
 

                    z 
 

                } 
 

            }  
 

        } 
 

        ''' 



   
 

   
 

 

        response = SERVICES.query(service="imu-service", query=request) 
 

        result = response["acc"] 
 

        success = result["success"] 
 

        errors = result["errors"] 
 

        accData = result["accData"] 
 

        x = accData["x"] 
 

        y = accData["y"] 
 

        z = accData["z"] 
 

 
  

        if success: 
 

            logger.info('Acceleration (m/s^2): ({}, {}, {})'.format(x, y, z)) 
 

        else: 
 

            logger.warn("Unable to retrieve accelerometer data: 

{}".format(errors)) 
 

 
  

    except Exception as e: 
 

        logger.warn("Unsuccessful getting data from accelerometer: {}-

{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

Imu-read-gyr.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

""" 



   
 

   
 

 

Mission application that reads gyroscope data from IMU 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("imu-read-gyr") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    parser.add_argument('cmd_args', nargs='*') 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 



   
 

   
 

 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Querying gyroscope data from FXAS21002...") 
 

 
  

    try: 
 

        request = ''' 
 

        {  
 

            gyr { 
 

                success 
 

                errors 
 

                gyrData { 
 

                    x 
 

                    y 



   
 

   
 

 

                    z 
 

                } 
 

            }  
 

        } 
 

        ''' 
 

        response = SERVICES.query(service="imu-service", query=request) 
 

        result = response["gyr"] 
 

        success = result["success"] 
 

        errors = result["errors"] 
 

        gyrData = result["gyrData"] 
 

        x = gyrData["x"] 
 

        y = gyrData["y"] 
 

        z = gyrData["z"] 
 

 
  

        if success: 
 

            logger.info('Gyroscope (uTesla): ({}, {}, {})'.format(x, y, z)) 
 

        else: 
 

            logger.warn("Unable to retrieve gyroscope data: {}".format(errors)) 
 

 
  

    except Exception as e: 
 

        logger.warn("Unsuccessful getting data from gyroscope: {}-

{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

Imu-read-mag.py 

  



   
 

   
 

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Mission application that reads magnetometer data from IMU 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("imu-read-mag") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    parser.add_argument('cmd_args', nargs='*') 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 



   
 

   
 

 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Querying magnetometer data from FXOS8700...") 
 

 
  

    try: 
 

        request = ''' 
 

        {  
 

            mag { 
 

                success 



   
 

   
 

 

                errors 
 

                magData { 
 

                    x 
 

                    y 
 

                    z 
 

                } 
 

            }  
 

        } 
 

        ''' 
 

        response = SERVICES.query(service="imu-service", query=request) 
 

        result = response["mag"] 
 

        success = result["success"] 
 

        errors = result["errors"] 
 

        magData = result["magData"] 
 

        x = magData["x"] 
 

        y = magData["y"] 
 

        z = magData["z"] 
 

 
  

        if success: 
 

            logger.info('Magnetometer (uTesla): ({}, {}, {})'.format(x, y, z)) 
 

        else: 
 

            logger.warn("Unable to retrieve magnetometer data: {}".format(errors)) 
 

 
  

    except Exception as e: 
 

        logger.warn("Unsuccessful getting data from magnetometer: {}-

{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 



   
 

   
 

 

Imu-read-qua.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that reads all data from IMU and returns quaternion values 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

import serial 
 

serial = serial.Serial( 
 

    port='/dev/ttyS0', 
 

    baudrate=115200, 
 

    parity=serial.PARITY_NONE, 
 

    stopbits=serial.STOPBITS_ONE, 
 

    bytesize=serial.EIGHTBITS, 
 

    timeout=1) 
 

 
  

def main(): 



   
 

   
 

 

 
  

    logger = app_api.logging_setup("imu-read-qua") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    parser.add_argument('cmd_args', nargs='*') 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 



   
 

   
 

 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.info("Querying quaternion values from IMU...") 
 

    while True: 
 

        input("pause") 
 

        try: 
 

            request = ''' 
 

            {  
 

                qua { 
 

                    success 
 

                    errors 
 

                    quaData { 
 

                        q1 
 

                        q2 
 

                        q3 
 

                        q4 
 

                    } 
 

                }  
 

            } 
 

            ''' 
 

            response = SERVICES.query(service="imu-service", query=request) 
 

            result = response["qua"] 
 

            success = result["success"] 
 

            errors = result["errors"] 
 

            quaData = result["quaData"] 
 

            q1 = quaData["q1"] 



   
 

   
 

 

            q2 = quaData["q2"] 
 

            q3 = quaData["q3"] 
 

            q4 = quaData["q4"] 
 

 
  

            if success: 
 

                logger.info('Quaternion: ({}, {}, {}, {})'.format(q1,q2,q3,q4)) 
 

            else: 
 

                logger.warning("Unable to retrieve quaternion data: 

{}".format(errors)) 
 

 
  

            try: 
 

                # open uart port 
 

                serial.close() 
 

                serial.open() 
 

 
  

                if serial.isOpen(): 
 

                    message = (q1,q2,q3,q4) 
 

                    # if uart port is open, try to send encoded string message 
 

                    serial.write(str(message).encode('utf-8')) 
 

                    serial.close() 
 

                    logger.debug("UART port is open. Sent message: 

{}".format(str(message))) 
 

                else: 
 

                    # if could not open uart port, return failure 
 

                    serial.close() 
 

                    logger.warn("Could not open serial port") 
 

 
  

            # return failure if exception during write/encoding 
 

            except Exception as e: 



   
 

   
 

 

                logger.warn("Error sending message {} over uart port: 

{}".format(str(message), str(e))) 
 

 
  

 
  

        except Exception as e: 
 

            logger.warning("Unsuccessful getting data from quaternion: {}-

{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

RTC Applications 

get-system-time.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Mission application that queries and prints current date and time from RTC 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 



   
 

   
 

 

 
  

import datetime 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("print-rtc-datetime") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 



   
 

   
 

 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' 
 

    query { 
 

        dateTime {  
 

            datetime 
 

            result { 
 

                success 
 

                errors 
 

            } 
 

        } 
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="rtc-service", query=request) 
 

 
  

    # get results 
 

    response = response['dateTime'] 
 

    result = response['result'] 
 

    success = result['success'] 
 

    errors = result['errors'] 
 

 
 



   
 

   
 

 

    # check results 
 

    if success: 
 

        datetime = response['datetime'] 
 

        logger.info("Got datetime from RTC: {}.".format(datetime)) 
 

    else: 
 

        logger.warn("Unable to get datetime from RTC: {}.".format(errors)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

set-system-time.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that queries time from RTC and sets BBB accordingly 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import os 
 

 
  

def main(): 



   
 

   
 

 

 
  

    logger = app_api.logging_setup("set-system-time") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 



   
 

   
 

 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

     
 

    # send mutation to turn off EPS port 
 

    request = ''' 
 

    query { 
 

        dateTime {  
 

            datetime 
 

            result { 
 

                success 
 

                errors 
 

            } 
 

        } 
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="rtc-service", query=request) 
 

 
  

    # get results 
 

    response = response['dateTime'] 
 

    result = response['result'] 
 

    success = result['success'] 
 

    errors = result['errors'] 
 

 
  

    # check results 
 

    try: 
 

        if success: 
 

            datetime = response['datetime'] 



   
 

   
 

 

            datetime = datetime.replace('T',' ') 
 

            print(datetime) 
 

            logger.info("Got datetime from RTC: {}. Setting system 

time...".format(datetime)) 
 

            os.system("date -s \"%s\"" % datetime) 
 

        else: 
 

            logger.warn("Unable to get datetime from RTC: {}.".format(errors)) 
 

    except Exception as e: 
 

        logger.warn("Unable to set datetime from RTC: {}.".format(str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

SCHEDULER Applications 

activate-mode.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Activate mode in scheduler. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 



   
 

   
 

 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("activate-mode") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
 



   
 

   
 

 

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    name = str(input("Enter mode name: ")) 
 

 
  

    # send mutation to activate mode 
 

    request = ''' 
 

    mutation { 
 

        activateMode(name: "%s") { 
 

            success 
 

            errors 
 

        } 
 

    }''' % (name) 
 

    response = SERVICES.query(service="scheduler-service", query=request) 
 

 
  

    # get results 
 

    response = response["activateMode"] 
 

    success = response["success"] 
 

    errors = response["errors"] 
 

 
  

    if success: 
 

        logger.info("Activtated mode named: {}.".format(name)) 
 

    else: 
 

        logger.warning("Could not activate {} mode: {}.".format(name, errors)) 
 

 
 



   
 

   
 

 

 
  

if __name__ == "__main__": 
 

    main() 

 

activate-safe-mode.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Activate safe mode in scheduler. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("activate-safe-mode") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 



   
 

   
 

 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

 
  

    # send mutation to activate safe mode 
 

    request = ''' 
 

    mutation { 



   
 

   
 

 

        safeMode { 
 

            success 
 

            errors 
 

        } 
 

    }''' 
 

    response = SERVICES.query(service="scheduler-service", query=request) 
 

 
  

    # get results 
 

    response = response["safeMode"] 
 

    success = response["success"] 
 

    errors = response["errors"] 
 

 
  

    if success: 
 

        logger.info("Activated safe mode.") 
 

    else: 
 

        logger.warning("Could not activate safe mode: {}".format(errors)) 
 

 
  

 
  

if __name__ == "__main__": 
 

    main() 

 

check-active-mode.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that checks current active mode (safe, idle, critical). 
 

""" 



   
 

   
 

 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("check-active-mode") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 



   
 

   
 

 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.debug("Requesting current active mode..") 
 

 
  

    # send query to check current active mode 
 

    request = ''' 
 

    query { 
 

        activeMode { 
 

            name 
 

            path 
 

            lastRevised 
 

            active 
 

            schedule { 
 

                filename 
 

                path 
 

                timeImported 
 

                tasks { 



   
 

   
 

 

                    description 
 

                    delay 
 

                    time 
 

                    period 
 

                    app { 
 

                        name 
 

                        args 
 

                        config 
 

                    } 
 

                } 
 

            } 
 

        } 
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="scheduler-service", query=request) 
 

 
  

    # get results 
 

    response = response["activeMode"] 
 

    name = response["name"] 
 

    path = response["path"] 
 

    lastRevised = response["lastRevised"] 
 

    active = response["active"] 
 

    schedule = response["schedule"] 
 

 
  

    logger.info("Currently in {} mode.".format(name)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 



   
 

   
 

check-available-modes.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that checks current available modes (safe, idle, critical). 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("check-available-modes") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 



   
 

   
 

 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    logger.debug("Requesting current available modes..") 
 

 
  

    # send query for available modes 
 

    request = ''' 
 

    query { 
 

        availableModes { 
 

            name 
 

            path 



   
 

   
 

 

            lastRevised 
 

            active 
 

            schedule { 
 

                filename 
 

                path 
 

                timeImported 
 

                tasks { 
 

                    description 
 

                    delay 
 

                    time 
 

                    period 
 

                    app { 
 

                        name 
 

                        args 
 

                        config 
 

                    } 
 

                } 
 

            } 
 

        } 
 

    } 
 

    ''' 
 

    response = SERVICES.query(service="scheduler-service", query=request) 
 

    # get results 
 

    response = response["availableModes"] 
 

    modes = [] 
 

    for mode in response: 
 

        name = mode["name"] 
 

        path = mode["path"] 



   
 

   
 

 

        lastRevised = mode["lastRevised"] 
 

        active = mode["active"] 
 

        schedule = mode["schedule"] 
 

 
  

        modes.append(name) 
 

         
 

 
  

    logger.info("Currently available modes: {}.".format(modes)) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

create-mode.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Create mode in scheduler. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 



   
 

   
 

 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("create-mode") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
 



   
 

   
 

 

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    name = str(input("Enter mode name: ")) 
 

 
  

    # send mutation to create mode in scheduler 
 

    request = ''' 
 

    mutation { 
 

        createMode(name: "%s") { 
 

            success 
 

            errors 
 

        } 
 

    }''' % (name) 
 

    response = SERVICES.query(service="scheduler-service", query=request) 
 

 
  

    # get results 
 

    response = response["createMode"] 
 

    success = response["success"] 
 

    errors = response["errors"] 
 

 
  

    if success: 
 

        logger.info("Created empty mode named: {}.".format(name)) 
 

    else: 
 

        logger.warning("Could not create {} mode: {}.".format(name, errors)) 
 

 
 



   
 

   
 

 

 
  

if __name__ == "__main__": 
 

    main() 

 

Import-task-list.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Add a task list to a mode in the scheduler. If the targeted mode is active, all 

tasks in the task list will be immediately scheduled. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("import-task-list") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 



   
 

   
 

 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

 
  

    path = "task_path" 
 

    name = "task_name" 
 

    mode = "mode_name" 



   
 

   
 

 

 
  

    # send mutation to add task list to mode in scheduler 
 

    request = ''' 
 

    mutation { 
 

        importTaskList(path: "%s", name: "%s", mode: "%s") { 
 

            success 
 

            errors 
 

        } 
 

    } 
 

    ''' % (path, name, mode) 
 

    response = SERVICES.query(service="scheduler-service", query=request) 
 

 
  

    # get results 
 

    response = response["importTaskList"] 
 

    success = response["success"] 
 

    errors = response["errors"] 
 

 
  

    if success: 
 

        logger.info("Added task list {} at {} to mode {}.".format(name, path, 

mode)) 
 

    else: 
 

        logger.warning("Could not add task list {} at {} to mode {}: 

{}.".format(name, path, mode, errors)) 
 

 
  

 
  

if __name__  

 

remove-mode.py 



   
 

   
 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Remove mode in scheduler. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("remove-mode") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 



   
 

   
 

 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    name = str(input("Enter mode name: ")) 
 

 
  

    # send mutation to remove mode from scheduler 
 

    request = ''' 
 

    mutation { 
 

        removeMode(name: "%s") { 
 

            success 
 

            errors 
 

        } 
 

    }''' % (name) 



   
 

   
 

 

    response = SERVICES.query(service="scheduler-service", query=request) 
 

 
  

    # get results 
 

    response = response["removeMode"] 
 

    success = response["success"] 
 

    errors = response["errors"] 
 

 
  

    if success: 
 

        logger.info("Removed mode named: {}.".format(name)) 
 

    else: 
 

        logger.warning("Could not remove {} mode: {}.".format(name, errors)) 
 

 
  

 
  

if __name__ == "__main__": 
 

    main() 

 

remove-task-list.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Remove a task list from a mode in the scheduler. If the mode is active, all tasks 

in the task list will be removed from the schedule. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
 



   
 

   
 

 

import app_api 
 

import argparse 
 

import sys 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("remove-task-list") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services("/etc/kubos-config.toml") 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 



   
 

   
 

 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

 
  

    name = "task_name" 
 

    mode = "mode_name" 
 

 
  

    # send mutation to remove task list from mode in scheduler 
 

    request = ''' 
 

    mutation { 
 

        removeTaskList(name: "%s", mode: "%s") { 
 

            success 
 

            errors 
 

        } 
 

    } 
 

    ''' % (name, mode) 
 

    response = SERVICES.query(service="scheduler-service", query=request) 
 

 
  

    # get results 
 

    response = response["removeTaskList"] 
 

    success = response["success"] 
 

    errors = response["errors"] 
 

 
 



   
 

   
 

 

    if success: 
 

        logger.info("Removed task list {} from mode {}.".format(name, mode)) 
 

    else: 
 

        logger.warning("Could not remove task list {} from mode {}: 

{}.".format(name, mode, errors)) 
 

 
  

 
  

if __name__ == "__main__": 
 

    main() 

 

TELEMETRY Applications 

add-entry-database.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Add entry to telemetry database 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
 



   
 

   
 

 

def main(): 
 

 
  

    logger = app_api.logging_setup("add-entry-database") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 



   
 

   
 

 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    name = str(input("Enter telemetry item name: ")) 
 

    subsystem = str(input("Enter telemetry item subsystem: ")) 
 

    value = str(input("Enter telemetry item value: ")) 
 

 
  

    # add telemetry to database 
 

    try: 
 

        # timestamp is optional and defaults to current system time 
 

        request = ''' 
 

        mutation { 
 

            insert(subsystem: "%s", parameter: "%s", value: "%s") { 
 

                success 
 

                errors 
 

            } 
 

        } 
 

        ''' % (subsystem, name, value) 
 

        response = SERVICES.query(service="telemetry-service", query=request) 
 

 
  

        # get results 
 

        result = response["insert"] 
 

        success = result["success"] 
 

        errors = result["errors"] 
 

 
  

        if success: 
 

            logger.info("Logged telemetry in database.") 



   
 

   
 

 

        else: 
 

            logger.warn("Unable to log telemetry to database: {}".format(errors)) 
 

 
  

    except Exception as e: 
 

        logger.error("Error logging information in telemetry database: 

{}{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

clear-database.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that cleans out telemetry database 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
 



   
 

   
 

 

    logger = app_api.logging_setup("health-clear-database") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
 



   
 

   
 

 

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    # delete all telemetry entries before a certain time 
 

    timestamp = time.time() - 86400 
 

    try: 
 

        ''' 
 

        mutation { 
 

            delete(timestampGe: Float, timestampLe: Float, subsystem: String, 

parameter: String): [{ 
 

                success: Boolean!, 
 

                errors: String!, 
 

                entriesDeleted: Integer 
 

            }] 
 

        } 
 

        timestampGe = delete entries with timestamps on or after given value 
 

        timestampLe = delete entries with timestamps on or before given value 
 

        subsystem = delete entries that match subsystem name 
 

        parameter = delete entries which match given parameter name (mutually 

exclusive with parameters) 
 

        ''' 
 

 
  

        request = ''' 
 

        mutation { 
 

            delete(timestampLe: %f) { 
 

                success 
 

                errors 
 

                entriesDeleted 
 

            } 
 

        } 



   
 

   
 

 

        ''' % (timestamp) # delete entries more than a day old 
 

        response = SERVICES.query(service="telemetry-service", query=request) 
 

 
  

        # get results 
 

        result = response["delete"] 
 

        success = result["success"] 
 

        errors = result["errors"] 
 

        entriesDeleted = result["entriesDeleted"] 
 

 
  

        if success: 
 

            logger.debug("Deleted {} entries from database before timestamp: 

{}".format(entriesDeleted, timestamp)) 
 

        else: 
 

            logger.warn("Unable to delete entries beforee timestamp: 

{}".format(timestamp)) 
 

 
  

    except Exception as e: 
 

        logger.error("Exception trying to clean telemetry database: 

{}{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

mem-database-query.py 

  

  

 

#!/usr/bin/env python3 
 

 
 



   
 

   
 

 

""" 
 

Mission application that retrieves current memory usage. 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 
 

 
  

    logger = app_api.logging_setup("health-mem-query") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 



   
 

   
 

 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 
 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    # retrieve memory telemetry from database 
 

    try: 
 

        ''' 
 

        query { 
 

            telemetry(timestampGe: Float, timestampLe: Float, subsystem: String, parameter: 

String, parameters: [String], limit: Integer): [{ 
 

                timestamp 
 

                subsystem 
 

                parameter 
 

                value 
 

            }] 
 

        } 



   
 

   
 

 

        timestampGe = return entries with timestamps on or after given value 
 

        timestampLe = return entries with timestamps on or before given value 
 

        subsystem = return entries that match subsystem name 
 

        parameter = return entries which match given parameter name (mutually exclusive 

with parameters) 
 

        parameters = returns entries which match given parameter names (mutually exclusive 

with parameter) 
 

        limit = return only first n entries found 
 

        ''' 
 

 
  

        request = ''' 
 

        { 
 

            telemetry(parameter: "free_memory_percentage") { 
 

                timestamp 
 

                subsystem 
 

                parameter 
 

                value 
 

            } 
 

        } 
 

        ''' 
 

        response = SERVICES.query(service="telemetry-service", query=request) 
 

 
  

        # get results 
 

        result = response["telemetry"] 
 

        for item in result: 
 

            timestamp = item["timestamp"] 
 

            subsystem = item["subsystem"] 
 

            parameter = item["parameter"] 
 

            value = item["value"] 



   
 

   
 

 

 
  

            logger.debug("Got telemetry:{} | timestamp:{} | subsystem:{} | 

value:{}".format(parameter, timestamp, subsystem, value)) 
 

 
  

    except Exception as e: 
 

        logger.error("Unable to retrieve memory telemetry from database: 

{}{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

print-database.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Mission application that prints out values in telemetry database 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import app_api 
 

import argparse 
 

import sys 
 

import time 
 

 
  

def main(): 



   
 

   
 

 

 
  

    logger = app_api.logging_setup("health-print-database") 
 

 
  

    # parse arguments for config file and run type 
 

    parser = argparse.ArgumentParser() 
 

    parser.add_argument('--run', '-r', nargs=1) 
 

    parser.add_argument('--config', '-c', nargs=1) 
 

    args = parser.parse_args() 
 

 
  

    if args.config is not None: 
 

        # use user config file if specified in command line 
 

        SERVICES = app_api.Services(args.config[0]) 
 

    else: 
 

        # else use default global config file 
 

        SERVICES = app_api.Services() 
 

 
  

    # run app onboot or oncommand logic 
 

    if args.run is not None: 
 

        if args.run[0] == 'OnBoot': 
 

            on_boot(logger, SERVICES) 
 

        elif args.run[0] == 'OnCommand': 
 

            on_command(logger, SERVICES) 
 

    else: 
 

        on_command(logger, SERVICES) 
 

 
  

# logic run for application on OBC boot 
 

def on_boot(logger, SERVICES): 
 

    pass 



   
 

   
 

 

 
  

# logic run when commanded by OBC 
 

def on_command(logger, SERVICES): 
 

    # retrieve memory telemetry from database 
 

    try: 
 

        ''' 
 

        query { 
 

            telemetry(timestampGe: Float, timestampLe: Float, subsystem: String, 

parameter: String, parameters: [String], limit: Integer): [{ 
 

                timestamp 
 

                subsystem 
 

                parameter 
 

                value 
 

            }] 
 

        } 
 

        timestampGe = return entries with timestamps on or after given value 
 

        timestampLe = return entries with timestamps on or before given value 
 

        subsystem = return entries that match subsystem name 
 

        parameter = return entries which match given parameter name (mutually 

exclusive with parameters) 
 

        parameters = returns entries which match given parameter names (mutually 

exclusive with parameter) 
 

        limit = return only first n entries found 
 

        ''' 
 

 
  

        request = ''' 
 

        { 
 

            telemetry(timestampLe: %f) { 
 

                timestamp 



   
 

   
 

 

                subsystem 
 

                parameter 
 

                value 
 

            } 
 

        } 
 

        ''' % (time.time()) 
 

        response = SERVICES.query(service="telemetry-service", query=request) 
 

 
  

        # get results 
 

        result = response["telemetry"] 
 

        for item in result: 
 

            timestamp = item["timestamp"] 
 

            subsystem = item["subsystem"] 
 

            parameter = item["parameter"] 
 

            value = item["value"] 
 

 
  

            logger.debug("Got telemetry:{} | timestamp:{} | subsystem:{} | 

value:{}".format(parameter, timestamp, subsystem, value)) 
 

 
  

    except Exception as e: 
 

        logger.error("Unable to retrieve memory telemetry from database: 

{}|{}".format(type(e).__name__,str(e))) 
 

 
  

if __name__ == "__main__": 
 

    main() 

 

SERIAL Libraries 

gpio.py 

  



   
 

   
 

  

 

#!/usr/bin/env python3 
 

 
  

""" 
 

Winsat gpio library for interacting with BBB GPIO pins 
 

""" 
 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import time 
 

import app_api 
 

import os 
 

 
  

class GPIO: 
 

 
  

    def __init__(self, pin): 
 

        self.pin = pin 
 

        self.logger = app_api.logging_setup("gpio-service-pin{}".format(self.pin)) 
 

 
  

    def attach(self): 
 

        try: 
 

            if os.system("echo {} > /sys/class/gpio/export".format(self.pin)) == 0: 
 

                return True 
 

            else: 
 

                self.logger.warning("Error attaching GPIO pin {}. Using fake 

GPIO...".format(self.pin)) 



   
 

   
 

 

                return False 
 

        except Exception as e: 
 

            self.logger.warning("Error attaching GPIO pin {}: {}. Using fake 

GPIO...".format(self.pin), str(e)) 
 

            return False 
 

     
 

    def release(self): 
 

        try: 
 

            os.system("echo {} > /sys/class/gpio/unexport".format(self.pin)) 
 

            return True 
 

        except Exception as e: 
 

            self.logger.warning("Error releasing GPIO pin {}: {}".format(self.pin), str(e)) 
 

            return False 
 

 
  

    def on(self): 
 

        try: 
 

            os.system("echo 1 > /sys/class/gpio/gpio{}/value".format(self.pin)) 
 

            return True 
 

        except Exception as e: 
 

            self.logger.warning("Error turning on GPIO pin {}: {}".format(self.pin), 

str(e)) 
 

            return False 
 

 
  

    def off(self): 
 

        try: 
 

            os.system("echo 0 > /sys/class/gpio/gpio{}/value".format(self.pin)) 
 

            return True 
 

        except Exception as e: 



   
 

   
 

 

            self.logger.warning("Error turning off of GPIO pin {}: {}".format(self.pin), 

str(e)) 
 

            return False 
 

 
  

    def direction(self, direction): 
 

        if direction: 
 

            try: 
 

                os.system("echo out > /sys/class/gpio/gpio{}/direction".format(self.pin)) 
 

                return True 
 

            except Exception as e: 
 

                self.logger.warning("Error setting direction of GPIO pin {}: 

{}".format(self.pin), str(e)) 
 

                return False 
 

        else: 
 

            try: 
 

                os.system("echo in > /sys/class/gpio/gpio{}/direction".format(self.pin)) 
 

                return True 
 

            except Exception as e: 
 

                self.logger.warning("Error setting direction of GPIO pin {}: 

{}".format(self.pin), str(e)) 
 

                return False 

 

I2c.py 

#!/usr/bin/env 

python3 
 

 
  

""" 
 

Winsat i2c library built on top of built-in Kubos i2c library 
 

""" 



   
 

   
 

 

 
  

__author__ = "Jon Grebe" 
 

__version__ = "0.1.0" 
 

__license__ = "MIT" 
 

 
  

import graphene 
 

import serial 
 

import time 
 

import app_api 
 

import smbus 
 

 
  

class I2C: 
 

 
  

    def __init__(self, bus, slave_address): 
 

        self.slave_address = slave_address 
 

        self.bus = smbus.SMBus(bus) 
 

 
  

    def write(self, register_address, data): 
 

     return self.bus.write_byte_data(self.slave_address, register_address, 

data) 
 

 
  

    def read(self, register_address): 
 

        return self.bus.read_byte_data(self.slave_address, register_address) 
 

 
  

class I2C_fake: 
 

 
  

    def __init__(self, bus, slave_address): 
 

        pass 
 

 
 



   
 

   
 

 

    def write(self, register_address, data): 
 

     return 
 

 
  

    def read(self, register_address): 
 

        return 0x00 

 

uart.py 

#!/usr/bin/env 

python3 
 

 
  

import serial 
 

import time 
 

from obcserial import config 
 

from xmodem import XMODEM 
 

import app_api 
 

 
  

class UART: 
 

    def __init__(self, port_number): 
 

        self.port = config.PORT_NAME[port_number] 
 

        self.serial = serial.Serial( 
 

            port=self.port, 
 

            baudrate=115200, 
 

            parity=serial.PARITY_NONE, 
 

            stopbits=serial.STOPBITS_ONE, 
 

            bytesize=serial.EIGHTBITS, 
 

            timeout=1) 
 

 
  

        # setup xmodem for image transfers 



   
 

   
 

 

        self.modem = XMODEM(self.getc, self.putc) 
 

     
 

        self.logger = app_api.logging_setup("UART") 
 

 
  

    def getc(self, size, timeout=1): 
 

        return self.serial.read(size) or None 
 

 
  

    def putc(self, data, timeout=1): 
 

        return self.serial.write(data) # note that this ignores the timeout 
 

 
  

    def transfer_image(self, filename): 
 

        try: 
 

            # open uart port 
 

            self.serial.close() 
 

            self.serial.open() 
 

 
  

            if self.serial.isOpen(): 
 

                self.logger.debug("UART port {} is open. Waiting for 

file...".format(self.port)) 
 

                stream = open(filename, 'wb+') 
 

                result = self.modem.recv(stream) 
 

                self.serial.close() 
 

                return result 
 

            else: 
 

                self.serial.close() 
 

                self.logger.warn("Could not open serial port for file transfer: 

{}".format(self.port)) 
 

                return False 
 

 
 



   
 

   
 

 

        except Exception as e: 
 

            self.logger.warn("Exception trying to read file: {} from xmodem 

stream: {}|{}".format(filename, type(e).__name__,str(e))) 
 

            return False 
 

 
  

    # send message to hardware over uart 
 

    def write(self, message): 
 

        try: 
 

            # open uart port 
 

            self.serial.close() 
 

            self.serial.open() 
 

 
  

            if self.serial.isOpen(): 
 

                # if uart port is open, try to send encoded string message 
 

                self.serial.write(str(message + '\r\n').encode('utf-8')) 
 

                self.serial.close() 
 

                self.logger.debug("UART port {} is open. Sent message: 

{}".format(self.port, str(message))) 
 

                return True 
 

            else: 
 

                # if could not open uart port, return failure 
 

                self.serial.close() 
 

                self.logger.warn("Could not open serial port: 

{}".format(self.port)) 
 

                return False 
 

 
  

        # return failure if exception during write/encoding 
 

        except Exception as e: 
 

            self.logger.warn("Error sending message {} over uart port {}: 

{}".format(str(message), self.port, str(e))) 



   
 

   
 

 

            self.serial.close() 
 

            return False 
 

 
  

    # get message from hardware over uart 
 

    def read(self): 
 

        try: 
 

            message = None 
 

            self.serial.close() 
 

            self.serial.open() 
 

            if self.serial.isOpen(): 
 

                # if uart port is open, try to read something 
 

                message = self.serial.readline() 
 

                message = message.decode('utf-8') 
 

                self.logger.debug("Uart port {} is open. Read line: 

{}".format(self.port,message)) 
 

                self.serial.close() 
 

                return True, message 
 

            else: 
 

                # if could not open uart port, return failure 
 

                self.serial.close() 
 

                self.logger.warn("Could not open serial port: 

{}".format(self.port)) 
 

                return False, None 
 

 
  

        # return failure if exception during read/decoding 
 

        except Exception as e: 
 

            self.logger.warn("Error reading message: {} over uart port {}: 

{}".format(message, self.port, str(e))) 
 

            self.serial.close 



   
 

   
 

 

            return False, None 

 

HARDWARE APIs 

ADC – ADS1115.py 

# 

Copyright 

(c) 2016 

Adafruit 

Industries 
 

# Author: Tony DiCola 
 

# 
 

# Permission is hereby granted, free of charge, to any person obtaining a copy 
 

# of this software and associated documentation files (the "Software"), to deal 
 

# in the Software without restriction, including without limitation the rights 
 

# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
 

# copies of the Software, and to permit persons to whom the Software is 
 

# furnished to do so, subject to the following conditions: 
 

# 
 

# The above copyright notice and this permission notice shall be included in 
 

# all copies or substantial portions of the Software. 
 

# 
 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
 

# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 

# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
 

# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
 

# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 
 

# THE SOFTWARE. 
 

import time 



   
 

   
 

 

import Adafruit_GPIO.I2C as I2C 
 

 
  

# Register and other configuration values: 
 

ADS1x15_DEFAULT_ADDRESS        = 0x48 
 

ADS1x15_POINTER_CONVERSION     = 0x00 
 

ADS1x15_POINTER_CONFIG         = 0x01 
 

ADS1x15_POINTER_LOW_THRESHOLD  = 0x02 
 

ADS1x15_POINTER_HIGH_THRESHOLD = 0x03 
 

ADS1x15_CONFIG_OS_SINGLE       = 0x8000 
 

ADS1x15_CONFIG_MUX_OFFSET      = 12 
 

# Maping of gain values to config register values. 
 

ADS1x15_CONFIG_GAIN = { 
 

    2/3: 0x0000, 
 

    1:   0x0200, 
 

    2:   0x0400, 
 

    4:   0x0600, 
 

    8:   0x0800, 
 

    16:  0x0A00 
 

} 
 

ADS1x15_CONFIG_MODE_CONTINUOUS  = 0x0000 
 

ADS1x15_CONFIG_MODE_SINGLE      = 0x0100 
 

 
  

# Mapping of data/sample rate to config register values for ADS1115 (slower). 
 

ADS1115_CONFIG_DR = { 
 

    8:    0x0000, 
 

    16:   0x0020, 
 

    32:   0x0040, 
 

    64:   0x0060, 



   
 

   
 

 

    128:  0x0080, 
 

    250:  0x00A0, 
 

    475:  0x00C0, 
 

    860:  0x00E0 
 

} 
 

ADS1x15_CONFIG_COMP_WINDOW      = 0x0010 
 

ADS1x15_CONFIG_COMP_ACTIVE_HIGH = 0x0008 
 

ADS1x15_CONFIG_COMP_LATCHING    = 0x0004 
 

ADS1x15_CONFIG_COMP_QUE = { 
 

    1: 0x0000, 
 

    2: 0x0001, 
 

    4: 0x0002 
 

} 
 

ADS1x15_CONFIG_COMP_QUE_DISABLE = 0x0003 
 

 
  

class ADS1115(): 
 

    """ADS1115 16-bit analog to digital converter instance.""" 
 

 
  

    def __init__(self, address=ADS1x15_DEFAULT_ADDRESS, bus=2): 
 

        self._device = I2C.get_i2c_device(address, bus) 
 

 
  

    def _data_rate_default(self): 
 

        """Retrieve the default data rate for this ADC (in samples per second). 
 

        """ 
 

        # Default from datasheet page 16, config register DR bit default. 
 

        return 128 
 

 
  

    def _data_rate_config(self, data_rate): 



   
 

   
 

 

        """Return a 16-bit value 
 

        that can be OR'ed with the config register to set the specified 
 

        data rate.  If a value of None is specified then a default data_rate 
 

        setting should be returned.  If an invalid or unsupported data_rate is 
 

        provided then an exception should be thrown. 
 

        """ 
 

        if data_rate not in ADS1115_CONFIG_DR: 
 

            raise ValueError('Data rate must be one of: 8, 16, 32, 64, 128, 250, 475, 

860') 
 

        return ADS1115_CONFIG_DR[data_rate] 
 

 
  

    def _conversion_value(self, low, high): 
 

        """Takes the low and high byte of a conversion result and returns a signed 

integer value.""" 
 

        # Convert to 16-bit signed value. 
 

        value = ((high & 0xFF) << 8) | (low & 0xFF) 
 

        # Check for sign bit and turn into a negative value if set. 
 

        if value & 0x8000 != 0: 
 

            value -= 1 << 16 
 

        return value 
 

 
  

    def _read(self, mux, gain, data_rate, mode): 
 

        """Perform an ADC read with the provided mux, gain, data_rate, and mode 
 

        values.  Returns the signed integer result of the read. 
 

        """ 
 

        config = ADS1x15_CONFIG_OS_SINGLE  # Go out of power-down mode for 

conversion. 
 

        # Specify mux value. 
 

        config |= (mux & 0x07) << ADS1x15_CONFIG_MUX_OFFSET 



   
 

   
 

 

        # Validate the passed in gain and then set it in the config. 
 

        if gain not in ADS1x15_CONFIG_GAIN: 
 

            raise ValueError('Gain must be one of: 2/3, 1, 2, 4, 8, 16') 
 

        config |= ADS1x15_CONFIG_GAIN[gain] 
 

        # Set the mode (continuous or single shot). 
 

        config |= mode 
 

        # Get the default data rate if none is specified (default differs between 
 

        # ADS1015 and ADS1115). 
 

        if data_rate is None: 
 

            data_rate = self._data_rate_default() 
 

        # Set the data rate (this is controlled by the subclass as it differs 
 

        # between ADS1015 and ADS1115). 
 

        config |= self._data_rate_config(data_rate) 
 

        config |= ADS1x15_CONFIG_COMP_QUE_DISABLE  # Disble comparator mode. 
 

        # Send the config value to start the ADC conversion. 
 

        # Explicitly break the 16-bit value down to a big endian pair of bytes. 
 

        self._device.writeList(ADS1x15_POINTER_CONFIG, [(config >> 8) & 0xFF, config 

& 0xFF]) 
 

        # Wait for the ADC sample to finish based on the sample rate plus a 
 

        # small offset to be sure (0.1 millisecond). 
 

        time.sleep(1.0/data_rate+0.0001) 
 

        # Retrieve the result. 
 

        result = self._device.readList(ADS1x15_POINTER_CONVERSION, 2) 
 

        return self._conversion_value(result[1], result[0]) 
 

 
  

    def _read_comparator(self, mux, gain, data_rate, mode, high_threshold, 
 

                         low_threshold, active_low, traditional, latching, 
 

                         num_readings): 
 

        """Perform an ADC read with the provided mux, gain, data_rate, and mode 



   
 

   
 

 

        values and with the comparator enabled as specified.  Returns the signed 
 

        integer result of the read. 
 

        """ 
 

        assert num_readings == 1 or num_readings == 2 or num_readings == 4, 'Num 

readings must be 1, 2, or 4!' 
 

        # Set high and low threshold register values. 
 

        self._device.writeList(ADS1x15_POINTER_HIGH_THRESHOLD, [(high_threshold >> 8) 

& 0xFF, high_threshold & 0xFF]) 
 

        self._device.writeList(ADS1x15_POINTER_LOW_THRESHOLD, [(low_threshold >> 8) & 

0xFF, low_threshold & 0xFF]) 
 

        # Now build up the appropriate config register value. 
 

        config = ADS1x15_CONFIG_OS_SINGLE  # Go out of power-down mode for 

conversion. 
 

        # Specify mux value. 
 

        config |= (mux & 0x07) << ADS1x15_CONFIG_MUX_OFFSET 
 

        # Validate the passed in gain and then set it in the config. 
 

        if gain not in ADS1x15_CONFIG_GAIN: 
 

            raise ValueError('Gain must be one of: 2/3, 1, 2, 4, 8, 16') 
 

        config |= ADS1x15_CONFIG_GAIN[gain] 
 

        # Set the mode (continuous or single shot). 
 

        config |= mode 
 

        # Get the default data rate if none is specified (default differs between 
 

        # ADS1015 and ADS1115). 
 

        if data_rate is None: 
 

            data_rate = self._data_rate_default() 
 

        # Set the data rate (this is controlled by the subclass as it differs 
 

        # between ADS1015 and ADS1115). 
 

        config |= self._data_rate_config(data_rate) 
 

        # Enable window mode if required. 
 

        if not traditional: 



   
 

   
 

 

            config |= ADS1x15_CONFIG_COMP_WINDOW 
 

        # Enable active high mode if required. 
 

        if not active_low: 
 

            config |= ADS1x15_CONFIG_COMP_ACTIVE_HIGH 
 

        # Enable latching mode if required. 
 

        if latching: 
 

            config |= ADS1x15_CONFIG_COMP_LATCHING 
 

        # Set number of comparator hits before alerting. 
 

        config |= ADS1x15_CONFIG_COMP_QUE[num_readings] 
 

        # Send the config value to start the ADC conversion. 
 

        # Explicitly break the 16-bit value down to a big endian pair of bytes. 
 

        self._device.writeList(ADS1x15_POINTER_CONFIG, [(config >> 8) & 0xFF, config 

& 0xFF]) 
 

        # Wait for the ADC sample to finish based on the sample rate plus a 
 

        # small offset to be sure (0.1 millisecond). 
 

        time.sleep(1.0/data_rate+0.0001) 
 

        # Retrieve the result. 
 

        result = self._device.readList(ADS1x15_POINTER_CONVERSION, 2) 
 

        return self._conversion_value(result[1], result[0]) 
 

 
  

    def read_adc(self, channel, gain=1, data_rate=None): 
 

        """Read a single ADC channel and return the ADC value as a signed integer 
 

        result.  Channel must be a value within 0-3. 
 

        """ 
 

        assert 0 <= channel <= 3, 'Channel must be a value within 0-3!' 
 

        # Perform a single shot read and set the mux value to the channel plus 
 

        # the highest bit (bit 3) set. 
 

        return self._read(channel + 0x04, gain, data_rate, 

ADS1x15_CONFIG_MODE_SINGLE) 



   
 

   
 

 

 
  

    def read_adc_difference(self, differential, gain=1, data_rate=None): 
 

        """Read the difference between two ADC channels and return the ADC value 
 

        as a signed integer result.  Differential must be one of: 
 

          - 0 = Channel 0 minus channel 1 
 

          - 1 = Channel 0 minus channel 3 
 

          - 2 = Channel 1 minus channel 3 
 

          - 3 = Channel 2 minus channel 3 
 

        """ 
 

        assert 0 <= differential <= 3, 'Differential must be a value within 0-3!' 
 

        # Perform a single shot read using the provided differential value 
 

        # as the mux value (which will enable differential mode). 
 

        return self._read(differential, gain, data_rate, ADS1x15_CONFIG_MODE_SINGLE) 
 

 
  

    def start_adc(self, channel, gain=1, data_rate=None): 
 

        """Start continuous ADC conversions on the specified channel (0-3). Will 
 

        return an initial conversion result, then call the get_last_result() 
 

        function to read the most recent conversion result. Call stop_adc() to 
 

        stop conversions. 
 

        """ 
 

        assert 0 <= channel <= 3, 'Channel must be a value within 0-3!' 
 

        # Start continuous reads and set the mux value to the channel plus 
 

        # the highest bit (bit 3) set. 
 

        return self._read(channel + 0x04, gain, data_rate, 

ADS1x15_CONFIG_MODE_CONTINUOUS) 
 

 
  

    def start_adc_difference(self, differential, gain=1, data_rate=None): 
 

        """Start continuous ADC conversions between two ADC channels. Differential 
 

        must be one of: 



   
 

   
 

 

          - 0 = Channel 0 minus channel 1 
 

          - 1 = Channel 0 minus channel 3 
 

          - 2 = Channel 1 minus channel 3 
 

          - 3 = Channel 2 minus channel 3 
 

        Will return an initial conversion result, then call the get_last_result() 
 

        function continuously to read the most recent conversion result.  Call 
 

        stop_adc() to stop conversions. 
 

        """ 
 

        assert 0 <= differential <= 3, 'Differential must be a value within 0-3!' 
 

        # Perform a single shot read using the provided differential value 
 

        # as the mux value (which will enable differential mode). 
 

        return self._read(differential, gain, data_rate, 

ADS1x15_CONFIG_MODE_CONTINUOUS) 
 

 
  

    def start_adc_comparator(self, channel, high_threshold, low_threshold, 
 

                             gain=1, data_rate=None, active_low=True, 
 

                             traditional=True, latching=False, num_readings=1): 
 

        """Start continuous ADC conversions on the specified channel (0-3) with 
 

        the comparator enabled.  When enabled the comparator to will check if 
 

        the ADC value is within the high_threshold & low_threshold value (both 
 

        should be signed 16-bit integers) and trigger the ALERT pin.  The 
 

        behavior can be controlled by the following parameters: 
 

          - active_low: Boolean that indicates if ALERT is pulled low or high 
 

                        when active/triggered.  Default is true, active low. 
 

          - traditional: Boolean that indicates if the comparator is in traditional 
 

                         mode where it fires when the value is within the threshold, 
 

                         or in window mode where it fires when the value is _outside_ 
 

                         the threshold range.  Default is true, traditional mode. 
 

          - latching: Boolean that indicates if the alert should be held until 



   
 

   
 

 

                      get_last_result() is called to read the value and clear 
 

                      the alert.  Default is false, non-latching. 
 

          - num_readings: The number of readings that match the comparator before 
 

                          triggering the alert.  Can be 1, 2, or 4.  Default is 1. 
 

        Will return an initial conversion result, then call the get_last_result() 
 

        function continuously to read the most recent conversion result.  Call 
 

        stop_adc() to stop conversions. 
 

        """ 
 

        assert 0 <= channel <= 3, 'Channel must be a value within 0-3!' 
 

        # Start continuous reads with comparator and set the mux value to the 
 

        # channel plus the highest bit (bit 3) set. 
 

        return self._read_comparator(channel + 0x04, gain, data_rate, 
 

                                     ADS1x15_CONFIG_MODE_CONTINUOUS, 
 

                                     high_threshold, low_threshold, active_low, 
 

                                     traditional, latching, num_readings) 
 

 
  

    def start_adc_difference_comparator(self, differential, high_threshold, 

low_threshold, 
 

                                        gain=1, data_rate=None, active_low=True, 
 

                                        traditional=True, latching=False, 

num_readings=1): 
 

        """Start continuous ADC conversions between two channels with 
 

        the comparator enabled.  See start_adc_difference for valid differential 
 

        parameter values and their meaning.  When enabled the comparator to will 
 

        check if the ADC value is within the high_threshold & low_threshold value 
 

        (both should be signed 16-bit integers) and trigger the ALERT pin.  The 
 

        behavior can be controlled by the following parameters: 
 

          - active_low: Boolean that indicates if ALERT is pulled low or high 
 

                        when active/triggered.  Default is true, active low. 



   
 

   
 

 

          - traditional: Boolean that indicates if the comparator is in traditional 
 

                         mode where it fires when the value is within the threshold, 
 

                         or in window mode where it fires when the value is _outside_ 
 

                         the threshold range.  Default is true, traditional mode. 
 

          - latching: Boolean that indicates if the alert should be held until 
 

                      get_last_result() is called to read the value and clear 
 

                      the alert.  Default is false, non-latching. 
 

          - num_readings: The number of readings that match the comparator before 
 

                          triggering the alert.  Can be 1, 2, or 4.  Default is 1. 
 

        Will return an initial conversion result, then call the get_last_result() 
 

        function continuously to read the most recent conversion result.  Call 
 

        stop_adc() to stop conversions. 
 

        """ 
 

        assert 0 <= differential <= 3, 'Differential must be a value within 0-3!' 
 

        # Start continuous reads with comparator and set the mux value to the 
 

        # channel plus the highest bit (bit 3) set. 
 

        return self._read_comparator(differential, gain, data_rate, 
 

                                     ADS1x15_CONFIG_MODE_CONTINUOUS, 
 

                                     high_threshold, low_threshold, active_low, 
 

                                     traditional, latching, num_readings) 
 

 
  

    def stop_adc(self): 
 

        """Stop all continuous ADC conversions (either normal or difference mode). 
 

        """ 
 

        # Set the config register to its default value of 0x8583 to stop 
 

        # continuous conversions. 
 

        config = 0x8583 
 

        self._device.writeList(ADS1x15_POINTER_CONFIG, [(config >> 8) & 0xFF, config 

& 0xFF]) 



   
 

   
 

 

 
  

    def get_last_result(self): 
 

        """Read the last conversion result when in continuous conversion mode. 
 

        Will return a signed integer value. 
 

        """ 
 

        # Retrieve the conversion register value, convert to a signed int, and 
 

        # return it. 
 

        result = self._device.readList(ADS1x15_POINTER_CONVERSION, 2) 
 

        return self._conversion_value(result[1], result[0]) 

 

RTC – DS3231.py 

#!/usr/bin/env 

python3 
 

 
  

from obcserial import i2c 
 

import app_api 
 

import smbus 
 

import datetime 
 

 
  

DS3231_ADDRESS = 0x68 
 

 
  

class DS3231: 
 

    """Interface to the DS3231 RTC.""" 
 

 
  

    def __init__(self, bus): 
 

        """ 
 

        Sets I2C bus number and address 
 

        """ 



   
 

   
 

 

        self.fake = False 
 

        try: 
 

            self.i2cfile = i2c.I2C(bus=bus, slave_address=DS3231_ADDRESS) 
 

        except Exception as e: 
 

            # exception trying to open i2c bus, run fake version 
 

            self.fake = True 
 

 
  

    def bcd2bin(self, value): 
 

        """ 
 

        Convert binary coded decimal (bcd) to binary 
 

        """ 
 

        return value - 6 * (value >> 4) 
 

 
  

    def bin2bcd(self, value): 
 

        """ 
 

        Convert binary value to binary coded decimal (bcd) 
 

        """ 
 

        return value + 6 * (value // 10) 
 

 
  

    def datetime(self): 
 

        """ 
 

        Get current date and time from RTC. 
 

        """ 
 

        if (self.fake): 
 

            return datetime.datetime(1970, 1, 1, 0, 0, 0) 
 

 
  

        sec = self.bcd2bin(self.i2cfile.read(0x00) & 0x7F)  
 

        minute = self.bcd2bin(self.i2cfile.read(0x01)) 



   
 

   
 

 

        hour = self.bcd2bin(self.i2cfile.read(0x02)) 
 

        wday = self.bcd2bin(self.i2cfile.read(0x03) - 1) 
 

        mday = self.bcd2bin(self.i2cfile.read(0x04)) 
 

        month = self.bcd2bin(self.i2cfile.read(0x05)) 
 

        year = self.bcd2bin(self.i2cfile.read(0x06)) + 2000 
 

 
  

        return datetime.datetime(year, month, mday, hour, minute, sec) 

 

IMU – IMU.py 

import 

smbus 
 

import logging 
 

import graphene 
 

from winserial import i2c 
 

import struct 
 

from math import sqrt, atan2, asin, degrees, radians 
 

import time 
 

from deltat import DeltaT 
 

 
  

 
  

_FXOS8700_ADDRESS               = 0x1F   # 0011111 
 

_FXOS8700_ID                    = 0xC7   # 1100 0111 
 

_FXOS8700_REGISTER_STATUS       = 0x00 
 

_FXOS8700_REGISTER_OUT_X_MSB    = 0x01 
 

_FXOS8700_REGISTER_OUT_X_LSB    = 0x02 
 

_FXOS8700_REGISTER_OUT_Y_MSB    = 0x03 
 

_FXOS8700_REGISTER_OUT_Y_LSB    = 0x04 
 

_FXOS8700_REGISTER_OUT_Z_MSB    = 0x05 



   
 

   
 

 

_FXOS8700_REGISTER_OUT_Z_LSB    = 0x06 
 

_FXOS8700_REGISTER_WHO_AM_I     = 0x0D   # 11000111   r 
 

_FXOS8700_REGISTER_XYZ_DATA_CFG = 0x0E 
 

_FXOS8700_REGISTER_CTRL_REG1    = 0x2A   # 00000000   r/w 
 

_FXOS8700_REGISTER_CTRL_REG2    = 0x2B   # 00000000   r/w 
 

_FXOS8700_REGISTER_CTRL_REG3    = 0x2C   # 00000000   r/w 
 

_FXOS8700_REGISTER_CTRL_REG4    = 0x2D   # 00000000   r/w 
 

_FXOS8700_REGISTER_CTRL_REG5    = 0x2E   # 00000000   r/w 
 

_FXOS8700_REGISTER_MSTATUS      = 0x32 
 

_FXOS8700_REGISTER_MOUT_X_MSB   = 0x33 
 

_FXOS8700_REGISTER_MOUT_X_LSB   = 0x34 
 

_FXOS8700_REGISTER_MOUT_Y_MSB   = 0x35 
 

_FXOS8700_REGISTER_MOUT_Y_LSB   = 0x36 
 

_FXOS8700_REGISTER_MOUT_Z_MSB   = 0x37 
 

_FXOS8700_REGISTER_MOUT_Z_LSB   = 0x38 
 

_FXOS8700_REGISTER_MCTRL_REG1   = 0x5B   # 00000000   r/w 
 

_FXOS8700_REGISTER_MCTRL_REG2   = 0x5C   # 00000000   r/w 
 

_FXOS8700_REGISTER_MCTRL_REG3   = 0x5D   # 00000000   r/w 
 

 
  

 
  

_FXAS21002C_ADDRESS       = 0x21  # 0100001 
 

_FXAS21002C_ID            = 0xD7       # 1101 0111 
 

_GYRO_REGISTER_STATUS     = 0x00 
 

_GYRO_REGISTER_OUT_X_MSB  = 0x01 
 

_GYRO_REGISTER_OUT_X_LSB  = 0x02 
 

_GYRO_REGISTER_OUT_Y_MSB  = 0x03 
 

_GYRO_REGISTER_OUT_Y_LSB  = 0x04 
 

_GYRO_REGISTER_OUT_Z_MSB  = 0x05 



   
 

   
 

 

_GYRO_REGISTER_OUT_Z_LSB  = 0x06 
 

_GYRO_REGISTER_WHO_AM_I   = 0x0C   # 11010111   r 
 

_GYRO_REGISTER_CTRL_REG0  = 0x0D  # 00000000   r/w 
 

_GYRO_REGISTER_CTRL_REG1  = 0x13  # 00000000   r/w 
 

_GYRO_REGISTER_CTRL_REG2  = 0x14  # 00000000   r/w 
 

_GYRO_SENSITIVITY_250DPS  = 0.0078125    # Table 35 of datasheet 
 

_GYRO_SENSITIVITY_500DPS  = 0.015625     # .. 
 

_GYRO_SENSITIVITY_1000DPS = 0.03125     # .. 
 

_GYRO_SENSITIVITY_2000DPS = 0.0625      # . 
 

 
  

_MAG_UT_LSB                     = 0.1 
 

_ACCEL_MG_LSB_2G                = 0.000244 
 

_SENSORS_GRAVITY_STANDARD       = 9.80665 
 

 
  

logger = logging.getLogger('imu-service') 
 

class IMU(graphene.ObjectType): 
 

    declination = 0 
 

    def __init__(self, bus, timediff=None): 
 

 
  

        timediff = lambda start, end : (start-end)/1000000 
 

        self.magbias = (0, 0, 0) 
 

        self.q = [1.0, 0.0, 0.0, 0.0] 
 

        GyroMeasError = radians(40) 
 

        self.beta = sqrt(3.0 / 4.0) * GyroMeasError 
 

        self.deltat = DeltaT(timediff) 
 

 
  

        try: 
 

            self.fxos_i2c = i2c.I2C(bus=bus, slave_address=_FXOS8700_ADDRESS) 



   
 

   
 

 

            self.fxas_i2c = i2c.I2C(bus=bus, slave_address=_FXAS21002C_ADDRESS) 
 

        except Exception as e: 
 

            logger.info("Unable to open I2C bus {} to device: {}. Will use fake i2c for 

testing.".format(bus, _FXOS8700_ADDRESS)) 
 

            self.fxos_i2c = i2c.I2C_fake(bus=bus, slave_address=_FXOS8700_ADDRESS) 
 

            self.fxas_i2c = i2c.I2C_fake(bus=bus, slave_address=_FXAS21002C_ADDRESS) 
 

            return 
 

 
  

        if self.fxos_i2c.read(_FXOS8700_REGISTER_WHO_AM_I) != _FXOS8700_ID: 
 

            logger.info('Failed to find FXOS8700, check wiring!. Using fake i2c for now') 
 

            self.fxos_i2c = i2c.I2C_fake(bus=bus, slave_address=_FXOS8700_ADDRESS) 
 

 
  

        if self.fxas_i2c.read(_GYRO_REGISTER_WHO_AM_I) != _FXAS21002C_ID: 
 

            logger.info('Failed to find FXAS21002C, check wiring!. Using fake i2c for 

now') 
 

            self.fxas_i2c = i2c.I2C_fake(bus=bus, slave_address=_FXAS21002C_ADDRESS) 
 

 
  

        # Set to standby mode (required to make changes to this register) 
 

        self.fxos_i2c.write(_FXOS8700_REGISTER_CTRL_REG1, 0) 
 

        # set accel range to 2G 
 

        self.fxos_i2c.write(_FXOS8700_REGISTER_XYZ_DATA_CFG, 0x00) 
 

        # High resolution 
 

        self.fxos_i2c.write(_FXOS8700_REGISTER_CTRL_REG2, 0x02) 
 

        # Active, Normal Mode, Low Noise, 100Hz in Hybrid Mode 
 

        self.fxos_i2c.write(_FXOS8700_REGISTER_CTRL_REG1, 0x15) 
 

        # Configure the magnetometer 
 

        # Hybrid Mode, Over Sampling Rate = 16 
 

        self.fxos_i2c.write(_FXOS8700_REGISTER_MCTRL_REG1, 0x1F) 
 

        # Jump to reg 0x33 after reading 0x06 



   
 

   
 

 

        self.fxos_i2c.write(_FXOS8700_REGISTER_MCTRL_REG2, 0x20) 
 

 
  

        self.fxas_i2c.write(_GYRO_REGISTER_CTRL_REG0, 0x03) # Set sensitivity 
 

        self.fxas_i2c.write(_GYRO_REGISTER_CTRL_REG1, 0x0E)     # Active 
 

        time.sleep(0.1) # 60 ms + 1/ODR 
 

 
  

    # return magnetometer data 
 

    def mag(self): 
 

        try: 
 

            x_MSB = self.fxos_i2c.read(_FXOS8700_REGISTER_MOUT_X_MSB) 
 

            x_LSB = self.fxos_i2c.read(_FXOS8700_REGISTER_MOUT_X_LSB) 
 

 
  

            y_MSB = self.fxos_i2c.read(_FXOS8700_REGISTER_MOUT_Y_MSB) 
 

            y_LSB = self.fxos_i2c.read(_FXOS8700_REGISTER_MOUT_Y_LSB) 
 

 
  

            z_MSB = self.fxos_i2c.read(_FXOS8700_REGISTER_MOUT_Z_MSB) 
 

            z_LSB = self.fxos_i2c.read(_FXOS8700_REGISTER_MOUT_Z_LSB) 
 

 
  

            BUFFER = bytearray() 
 

            BUFFER = [x_MSB, x_LSB, y_MSB, y_LSB, z_MSB, z_LSB] 
 

            BUFFER = bytes(BUFFER) 
 

            x = struct.unpack_from('>H', BUFFER[0:2])[0] 
 

            y = struct.unpack_from('>H', BUFFER[2:4])[0] 
 

            z = struct.unpack_from('>H', BUFFER[4:6])[0] 
 

             
 

            x = self._twos_comp(x >> 2, 14) 
 

            y = self._twos_comp(y >> 2, 14) 
 

            z = self._twos_comp(z >> 2, 14) 



   
 

   
 

 

 
  

            x = x * _MAG_UT_LSB 
 

            y = y * _MAG_UT_LSB 
 

            z = z * _MAG_UT_LSB 
 

         
 

            success = True 
 

            errors = [] 
 

            return success, errors, x, y, z 
 

 
  

        except Exception as e: 
 

            success = False 
 

            errors = ["{}:{}".format(type(e).__name__,str(e))] 
 

            return success, errors, None, None, None 
 

 
  

    # return accelerometer x,y,z values 
 

    def acc(self): 
 

        try: 
 

            x_MSB = self.fxos_i2c.read(_FXOS8700_REGISTER_OUT_X_MSB) 
 

            x_LSB = self.fxos_i2c.read(_FXOS8700_REGISTER_OUT_X_LSB) 
 

 
  

            y_MSB = self.fxos_i2c.read(_FXOS8700_REGISTER_OUT_Y_MSB) 
 

            y_LSB = self.fxos_i2c.read(_FXOS8700_REGISTER_OUT_Y_LSB) 
 

 
  

            z_MSB = self.fxos_i2c.read(_FXOS8700_REGISTER_OUT_Z_MSB) 
 

            z_LSB = self.fxos_i2c.read(_FXOS8700_REGISTER_OUT_Z_LSB) 
 

 
  

            BUFFER = bytearray() 
 

            BUFFER = [x_MSB, x_LSB, y_MSB, y_LSB, z_MSB, z_LSB] 



   
 

   
 

 

            BUFFER = bytes(BUFFER) 
 

            x = struct.unpack_from('>H', BUFFER[0:2])[0] 
 

            y = struct.unpack_from('>H', BUFFER[2:4])[0] 
 

            z = struct.unpack_from('>H', BUFFER[4:6])[0] 
 

             
 

            x = self._twos_comp(x >> 2, 14) 
 

            y = self._twos_comp(y >> 2, 14) 
 

            z = self._twos_comp(z >> 2, 14) 
 

 
  

            x = x * _ACCEL_MG_LSB_2G * _SENSORS_GRAVITY_STANDARD 
 

            y = y * _ACCEL_MG_LSB_2G * _SENSORS_GRAVITY_STANDARD 
 

            z = z * _ACCEL_MG_LSB_2G * _SENSORS_GRAVITY_STANDARD 
 

 
  

            success = True 
 

            errors = [] 
 

            return success, errors, x, y, z 
 

 
  

        except Exception as e: 
 

            success = False 
 

            errors = ["{}:{}".format(type(e).__name__,str(e))] 
 

            return success, errors, None, None, None 
 

         
 

    # return gyroscope x,y,z values 
 

    def gyr(self): 
 

        try: 
 

            x_MSB = self.fxas_i2c.read(_GYRO_REGISTER_OUT_X_MSB) 
 

            x_LSB = self.fxas_i2c.read(_GYRO_REGISTER_OUT_X_LSB) 
 

 
 



   
 

   
 

 

            y_MSB = self.fxas_i2c.read(_GYRO_REGISTER_OUT_Y_MSB) 
 

            y_LSB = self.fxas_i2c.read(_GYRO_REGISTER_OUT_Y_LSB) 
 

 
  

            z_MSB = self.fxas_i2c.read(_GYRO_REGISTER_OUT_Z_MSB) 
 

            z_LSB = self.fxas_i2c.read(_GYRO_REGISTER_OUT_Z_LSB) 
 

 
  

            BUFFER = bytearray() 
 

            BUFFER = [x_MSB, x_LSB, y_MSB, y_LSB, z_MSB, z_LSB] 
 

            BUFFER = bytes(BUFFER) 
 

            # Parse out the gyroscope data as 16-bit signed data. 
 

            x = struct.unpack_from('>h', BUFFER[0:2])[0] 
 

            y = struct.unpack_from('>h', BUFFER[2:4])[0] 
 

            z = struct.unpack_from('>h', BUFFER[4:6])[0] 
 

 
  

            x = x * _GYRO_SENSITIVITY_250DPS 
 

            y = y * _GYRO_SENSITIVITY_250DPS 
 

            z = z * _GYRO_SENSITIVITY_250DPS 
 

 
  

            success = True 
 

            errors = [] 
 

            return success, errors, x, y, z 
 

 
  

        except Exception as e: 
 

            success = False 
 

            errors = ["{}:{}".format(type(e).__name__,str(e))] 
 

            return success, errors, None, None, None 
 

 
  

    def qua(self, ts=None): 



   
 

   
 

 

        ts = time.time() 
 

        success, errors, x, y, z = self.mag() 
 

        mag = (x,y,z) 
 

        success, errors, x, y, z = self.acc() 
 

        accel = (x,y,z) 
 

        success, errors, x, y, z = self.gyr() 
 

        gyro = (x,y,z) 
 

 
  

        mx, my, mz = (mag[x] - self.magbias[x] for x in range(3)) # Units irrelevant 

(normalised) 
 

        ax, ay, az = accel                  # Units irrelevant (normalised) 
 

        gx, gy, gz = (radians(x) for x in gyro)  # Units deg/s 
 

        q1, q2, q3, q4 = (self.q[x] for x in range(4))   # short name local variable for 

readability 
 

        # Auxiliary variables to avoid repeated arithmetic 
 

        _2q1 = 2 * q1 
 

        _2q2 = 2 * q2 
 

        _2q3 = 2 * q3 
 

        _2q4 = 2 * q4 
 

        _2q1q3 = 2 * q1 * q3 
 

        _2q3q4 = 2 * q3 * q4 
 

        q1q1 = q1 * q1 
 

        q1q2 = q1 * q2 
 

        q1q3 = q1 * q3 
 

        q1q4 = q1 * q4 
 

        q2q2 = q2 * q2 
 

        q2q3 = q2 * q3 
 

        q2q4 = q2 * q4 
 

        q3q3 = q3 * q3 



   
 

   
 

 

        q3q4 = q3 * q4 
 

        q4q4 = q4 * q4 
 

 
  

        # Normalise accelerometer measurement 
 

        norm = sqrt(ax * ax + ay * ay + az * az) 
 

        if (norm == 0): 
 

            return True, [], self.q[0], self.q[1], self.q[2], self.q[3] 
 

        norm = 1 / norm                     # use reciprocal for division 
 

        ax *= norm 
 

        ay *= norm 
 

        az *= norm 
 

 
  

        # Normalise magnetometer measurement 
 

        norm = sqrt(mx * mx + my * my + mz * mz) 
 

        if (norm == 0): 
 

            return True, [], self.q[0], self.q[1], self.q[2], self.q[3] 
 

        norm = 1 / norm                     # use reciprocal for division 
 

        mx *= norm 
 

        my *= norm 
 

        mz *= norm 
 

 
  

        # Reference direction of Earth's magnetic field 
 

        _2q1mx = 2 * q1 * mx 
 

        _2q1my = 2 * q1 * my 
 

        _2q1mz = 2 * q1 * mz 
 

        _2q2mx = 2 * q2 * mx 
 

        hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * 

mz * q4 - mx * q3q3 - mx * q4q4 



   
 

   
 

 

        hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 

+ _2q3 * mz * q4 - my * q4q4 
 

        _2bx = sqrt(hx * hx + hy * hy) 
 

        _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * 

my * q4 - mz * q3q3 + mz * q4q4 
 

        _4bx = 2 * _2bx 
 

        _4bz = 2 * _2bz 
 

 
  

        # Gradient descent algorithm corrective step 
 

        s1 = (-_2q3 * (2 * q2q4 - _2q1q3 - ax) + _2q2 * (2 * q1q2 + _2q3q4 - ay) - _2bz * 

q3 * (_2bx * (0.5 - q3q3 - q4q4) 
 

             + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - 

q1q4) + _2bz * (q1q2 + q3q4) - my) 
 

             + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5 - q2q2 - q3q3) - mz)) 
 

 
  

        s2 = (_2q4 * (2 * q2q4 - _2q1q3 - ax) + _2q1 * (2 * q1q2 + _2q3q4 - ay) - 4 * q2 

* (1 - 2 * q2q2 - 2 * q3q3 - az) 
 

             + _2bz * q4 * (_2bx * (0.5 - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + 

(_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) 
 

             + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + 

q2q4) + _2bz * (0.5 - q2q2 - q3q3) - mz)) 
 

 
  

        s3 = (-_2q1 * (2 * q2q4 - _2q1q3 - ax) + _2q4 * (2 * q1q2 + _2q3q4 - ay) - 4 * q3 

* (1 - 2 * q2q2 - 2 * q3q3 - az) 
 

             + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5 - q3q3 - q4q4) + _2bz * (q2q4 - 

q1q3) - mx) 
 

             + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - 

my) 
 

             + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5 - q2q2 - 

q3q3) - mz)) 
 

 
  

        s4 = (_2q2 * (2 * q2q4 - _2q1q3 - ax) + _2q3 * (2 * q1q2 + _2q3q4 - ay) + (-_4bx 

* q4 + _2bz * q2) * (_2bx * (0.5 - q3q3 - q4q4) 



   
 

   
 

 

              + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - 

q1q4) + _2bz * (q1q2 + q3q4) - my) 
 

              + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5 - q2q2 - q3q3) - mz)) 
 

 
  

        norm = 1 / sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4)    # normalise step 

magnitude 
 

        s1 *= norm 
 

        s2 *= norm 
 

        s3 *= norm 
 

        s4 *= norm 
 

 
  

        # Compute rate of change of quaternion 
 

        qDot1 = 0.5 * (-q2 * gx - q3 * gy - q4 * gz) - self.beta * s1 
 

        qDot2 = 0.5 * (q1 * gx + q3 * gz - q4 * gy) - self.beta * s2 
 

        qDot3 = 0.5 * (q1 * gy - q2 * gz + q4 * gx) - self.beta * s3 
 

        qDot4 = 0.5 * (q1 * gz + q2 * gy - q3 * gx) - self.beta * s4 
 

 
  

        # Integrate to yield quaternion 
 

        deltat = self.deltat(ts) 
 

        q1 += qDot1 * deltat 
 

        q2 += qDot2 * deltat 
 

        q3 += qDot3 * deltat 
 

        q4 += qDot4 * deltat 
 

        norm = 1 / sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4)    # normalise quaternion 
 

        self.q = q1 * norm, q2 * norm, q3 * norm, q4 * norm 
 

        self.heading = self.declination + degrees(atan2(2.0 * (self.q[1] * self.q[2] + 

self.q[0] * self.q[3]), 
 

            self.q[0] * self.q[0] + self.q[1] * self.q[1] - self.q[2] * self.q[2] - 

self.q[3] * self.q[3])) 



   
 

   
 

 

        self.pitch = degrees(-asin(2.0 * (self.q[1] * self.q[3] - self.q[0] * 

self.q[2]))) 
 

        self.roll = degrees(atan2(2.0 * (self.q[0] * self.q[1] + self.q[2] * self.q[3]), 
 

            self.q[0] * self.q[0] - self.q[1] * self.q[1] - self.q[2] * self.q[2] + 

self.q[3] * self.q[3])) 
 

 
  

        return True, [], self.q[0], self.q[1], self.q[2], self.q[3] 
 

 
  

 
  

    def _twos_comp(self, val, bits): 
 

        # Convert an unsigned integer in 2's compliment form of the specified bit 
 

        # length to its signed integer value and return it. 
 

        if val & (1 << (bits - 1)) != 0: 
 

            return val - (1 << bits) 
 

        return val 

 

RADIO – RFM69.py 

# The 

MIT 

License 

(MIT) 
 

# 
 

# Copyright (c) 2017 Tony DiCola for Adafruit Industries 
 

# 
 

# Permission is hereby granted, free of charge, to any person obtaining a copy 
 

# of this software and associated documentation files (the "Software"), to deal 
 

# in the Software without restriction, including without limitation the rights 
 

# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
 

# copies of the Software, and to permit persons to whom the Software is 
 

# furnished to do so, subject to the following conditions: 



   
 

   
 

 

# 
 

# The above copyright notice and this permission notice shall be included in 
 

# all copies or substantial portions of the Software. 
 

# 
 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
 

# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 

# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
 

# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
 

# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 
 

# THE SOFTWARE. 
 

""" 
 

`adafruit_rfm69` 
 

==================================================== 
 

CircuitPython RFM69 packet radio module. This supports basic RadioHead-compatible 

sending and 
 

receiving of packets with RFM69 series radios (433/915Mhz). 
 

.. warning:: This is NOT for LoRa radios! 
 

.. note:: This is a 'best effort' at receiving data using pure Python code--there is not 

interrupt 
 

    support so you might lose packets if they're sent too quickly for the board to 

process them. 
 

    You will have the most luck using this in simple low bandwidth scenarios like 

sending and 
 

    receiving a 60 byte packet at a time--don't try to receive many kilobytes of data at 

a time! 
 

* Author(s): Tony DiCola, Jerry Needell 
 

Implementation Notes 
 

-------------------- 
 

**Hardware:** 



   
 

   
 

 

* Adafruit `RFM69HCW Transceiver Radio Breakout - 868 or 915 MHz - RadioFruit 
 

  <https://www.adafruit.com/product/3070>`_ (Product ID: 3070) 
 

* Adafruit `RFM69HCW Transceiver Radio Breakout - 433 MHz - RadioFruit 
 

  <https://www.adafruit.com/product/3071>`_ (Product ID: 3071) 
 

* Adafruit `Feather M0 RFM69HCW Packet Radio - 868 or 915 MHz - RadioFruit 
 

  <https://www.adafruit.com/product/3176>`_ (Product ID: 3176) 
 

* Adafruit `Feather M0 RFM69HCW Packet Radio - 433 MHz - RadioFruit 
 

  <https://www.adafruit.com/product/3177>`_ (Product ID: 3177) 
 

* Adafruit `Radio FeatherWing - RFM69HCW 900MHz - RadioFruit 
 

  <https://www.adafruit.com/product/3229>`_ (Product ID: 3229) 
 

* Adafruit `Radio FeatherWing - RFM69HCW 433MHz - RadioFruit 
 

  <https://www.adafruit.com/product/3230>`_ (Product ID: 3230) 
 

**Software and Dependencies:** 
 

* Adafruit CircuitPython firmware for the ESP8622 and M0-based boards: 
 

  https://github.com/adafruit/circuitpython/releases 
 

* Adafruit's Bus Device library: 

https://github.com/adafruit/Adafruit_CircuitPython_BusDevice 
 

""" 
 

import time 
 

import random 
 

 
  

from micropython import const 
 

 
  

import adafruit_bus_device.spi_device as spidev 
 

 
  

 
  

__version__ = "0.0.0-auto.0" 
 

__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_RFM69.git" 
 

 
 



   
 

   
 

 

 
  

# Internal constants: 
 

_REG_FIFO = const(0x00) 
 

_REG_OP_MODE = const(0x01) 
 

_REG_DATA_MOD = const(0x02) 
 

_REG_BITRATE_MSB = const(0x03) 
 

_REG_BITRATE_LSB = const(0x04) 
 

_REG_FDEV_MSB = const(0x05) 
 

_REG_FDEV_LSB = const(0x06) 
 

_REG_FRF_MSB = const(0x07) 
 

_REG_FRF_MID = const(0x08) 
 

_REG_FRF_LSB = const(0x09) 
 

_REG_VERSION = const(0x10) 
 

_REG_PA_LEVEL = const(0x11) 
 

_REG_RX_BW = const(0x19) 
 

_REG_AFC_BW = const(0x1A) 
 

_REG_RSSI_VALUE = const(0x24) 
 

_REG_DIO_MAPPING1 = const(0x25) 
 

_REG_IRQ_FLAGS1 = const(0x27) 
 

_REG_IRQ_FLAGS2 = const(0x28) 
 

_REG_PREAMBLE_MSB = const(0x2C) 
 

_REG_PREAMBLE_LSB = const(0x2D) 
 

_REG_SYNC_CONFIG = const(0x2E) 
 

_REG_SYNC_VALUE1 = const(0x2F) 
 

_REG_PACKET_CONFIG1 = const(0x37) 
 

_REG_FIFO_THRESH = const(0x3C) 
 

_REG_PACKET_CONFIG2 = const(0x3D) 
 

_REG_AES_KEY1 = const(0x3E) 



   
 

   
 

 

_REG_TEMP1 = const(0x4E) 
 

_REG_TEMP2 = const(0x4F) 
 

_REG_TEST_PA1 = const(0x5A) 
 

_REG_TEST_PA2 = const(0x5C) 
 

_REG_TEST_DAGC = const(0x6F) 
 

 
  

_TEST_PA1_NORMAL = const(0x55) 
 

_TEST_PA1_BOOST = const(0x5D) 
 

_TEST_PA2_NORMAL = const(0x70) 
 

_TEST_PA2_BOOST = const(0x7C) 
 

 
  

# The crystal oscillator frequency and frequency synthesizer step size. 
 

# See the datasheet for details of this calculation. 
 

_FXOSC = 32000000.0 
 

_FSTEP = _FXOSC / 524288 
 

 
  

# RadioHead specific compatibility constants. 
 

_RH_BROADCAST_ADDRESS = const(0xFF) 
 

# The acknowledgement bit in the FLAGS 
 

# The top 4 bits of the flags are reserved for RadioHead. The lower 4 bits are reserved 
 

# for application layer use. 
 

_RH_FLAGS_ACK = const(0x80) 
 

_RH_FLAGS_RETRY = const(0x40) 
 

 
  

# User facing constants: 
 

SLEEP_MODE = 0b000 
 

STANDBY_MODE = 0b001 
 

FS_MODE = 0b010 



   
 

   
 

 

TX_MODE = 0b011 
 

RX_MODE = 0b100 
 

 
  

# Disable the silly too many instance members warning.  Pylint has no knowledge 
 

# of the context and is merely guessing at the proper amount of members.  This 
 

# is a complex chip which requires exposing many attributes and state.  Disable 
 

# the warning to work around the error. 
 

# pylint: disable=too-many-instance-attributes 
 

 
  

 
  

class RFM69: 
 

    """Interface to a RFM69 series packet radio.  Allows simple sending and 
 

    receiving of wireless data at supported frequencies of the radio 
 

    (433/915mhz). 
 

    :param busio.SPI spi: The SPI bus connected to the chip.  Ensure SCK, MOSI, and MISO 

are 
 

        connected. 
 

    :param ~digitalio.DigitalInOut cs: A DigitalInOut object connected to the chip's 

CS/chip select 
 

        line. 
 

    :param ~digitalio.DigitalInOut reset: A DigitalInOut object connected to the chip's 

RST/reset 
 

        line. 
 

    :param int frequency: The center frequency to configure for radio transmission and 

reception. 
 

        Must be a frequency supported by your hardware (i.e. either 433 or 915mhz). 
 

    :param bytes sync_word: A byte string up to 8 bytes long which represents the 

syncronization 
 

        word used by received and transmitted packets. Read the datasheet for a full 

understanding 



   
 

   
 

 

        of this value! However by default the library will set a value that matches the 

RadioHead 
 

        Arduino library. 
 

    :param int preamble_length: The number of bytes to pre-pend to a data packet as a 

preamble. 
 

        This is by default 4 to match the RadioHead library. 
 

    :param bytes encryption_key: A 16 byte long string that represents the AES 

encryption key to use 
 

        when encrypting and decrypting packets.  Both the transmitter and receiver MUST 

have the 
 

        same key value! By default no encryption key is set or used. 
 

    :param bool high_power: Indicate if the chip is a high power variant that supports 

boosted 
 

        transmission power.  The default is True as it supports the common RFM69HCW 

modules sold by 
 

        Adafruit. 
 

    .. note:: The D0/interrupt line is currently unused by this module and can remain 

unconnected. 
 

    Remember this library makes a best effort at receiving packets with pure Python 

code.  Trying 
 

    to receive packets too quickly will result in lost data so limit yourself to simple 

scenarios 
 

    of sending and receiving single packets at a time. 
 

    Also note this library tries to be compatible with raw RadioHead Arduino library 

communication. 
 

    This means the library sets up the radio modulation to match RadioHead's default of 

GFSK 
 

    encoding, 250kbit/s bitrate, and 250khz frequency deviation. To change this requires 

explicitly 
 

    setting the radio's bitrate and encoding register bits. Read the datasheet and study 

the init 
 

    function to see an example of this--advanced users only! Advanced RadioHead features 

like 



   
 

   
 

 

    address/node specific packets or "reliable datagram" delivery are supported however 

due to the 
 

    limitations noted, "reliable datagram" is still subject to missed packets but with 

it, the 
 

    sender is notified if a packe has potentially been missed. 
 

    """ 
 

 
  

    # Global buffer for SPI commands. 
 

    _BUFFER = bytearray(4) 
 

 
  

    class _RegisterBits: 
 

        # Class to simplify access to the many configuration bits avaialable 
 

        # on the chip's registers.  This is a subclass here instead of using 
 

        # a higher level module to increase the efficiency of memory usage 
 

        # (all of the instances of this bit class will share the same buffer 
 

        # used by the parent RFM69 class instance vs. each having their own 
 

        # buffer and taking too much memory). 
 

 
  

        # Quirk of pylint that it requires public methods for a class.  This 
 

        # is a decorator class in Python and by design it has no public methods. 
 

        # Instead it uses dunder accessors like get and set below.  For some 
 

        # reason pylint can't figure this out so disable the check. 
 

        # pylint: disable=too-few-public-methods 
 

 
  

        # Again pylint fails to see the true intent of this code and warns 
 

        # against private access by calling the write and read functions below. 
 

        # This is by design as this is an internally used class.  Disable the 
 

        # check from pylint. 
 

        # pylint: disable=protected-access 



   
 

   
 

 

 
  

        def __init__(self, address, *, offset=0, bits=1): 
 

            assert 0 <= offset <= 7 
 

            assert 1 <= bits <= 8 
 

            assert (offset + bits) <= 8 
 

            self._address = address 
 

            self._mask = 0 
 

            for _ in range(bits): 
 

                self._mask <<= 1 
 

                self._mask |= 1 
 

            self._mask <<= offset 
 

            self._offset = offset 
 

 
  

        def __get__(self, obj, objtype): 
 

            reg_value = obj._read_u8(self._address) 
 

            return (reg_value & self._mask) >> self._offset 
 

 
  

        def __set__(self, obj, val): 
 

            reg_value = obj._read_u8(self._address) 
 

            reg_value &= ~self._mask 
 

            reg_value |= (val & 0xFF) << self._offset 
 

            obj._write_u8(self._address, reg_value) 
 

 
  

    # Control bits from the registers of the chip: 
 

    data_mode = _RegisterBits(_REG_DATA_MOD, offset=5, bits=2) 
 

    modulation_type = _RegisterBits(_REG_DATA_MOD, offset=3, bits=2) 
 

    modulation_shaping = _RegisterBits(_REG_DATA_MOD, offset=0, bits=2) 
 

    temp_start = _RegisterBits(_REG_TEMP1, offset=3) 



   
 

   
 

 

    temp_running = _RegisterBits(_REG_TEMP1, offset=2) 
 

    sync_on = _RegisterBits(_REG_SYNC_CONFIG, offset=7) 
 

    sync_size = _RegisterBits(_REG_SYNC_CONFIG, offset=3, bits=3) 
 

    aes_on = _RegisterBits(_REG_PACKET_CONFIG2, offset=0) 
 

    pa_0_on = _RegisterBits(_REG_PA_LEVEL, offset=7) 
 

    pa_1_on = _RegisterBits(_REG_PA_LEVEL, offset=6) 
 

    pa_2_on = _RegisterBits(_REG_PA_LEVEL, offset=5) 
 

    output_power = _RegisterBits(_REG_PA_LEVEL, offset=0, bits=5) 
 

    rx_bw_dcc_freq = _RegisterBits(_REG_RX_BW, offset=5, bits=3) 
 

    rx_bw_mantissa = _RegisterBits(_REG_RX_BW, offset=3, bits=2) 
 

    rx_bw_exponent = _RegisterBits(_REG_RX_BW, offset=0, bits=3) 
 

    afc_bw_dcc_freq = _RegisterBits(_REG_AFC_BW, offset=5, bits=3) 
 

    afc_bw_mantissa = _RegisterBits(_REG_AFC_BW, offset=3, bits=2) 
 

    afc_bw_exponent = _RegisterBits(_REG_AFC_BW, offset=0, bits=3) 
 

    packet_format = _RegisterBits(_REG_PACKET_CONFIG1, offset=7, bits=1) 
 

    dc_free = _RegisterBits(_REG_PACKET_CONFIG1, offset=5, bits=2) 
 

    crc_on = _RegisterBits(_REG_PACKET_CONFIG1, offset=4, bits=1) 
 

    crc_auto_clear_off = _RegisterBits(_REG_PACKET_CONFIG1, offset=3, bits=1) 
 

    address_filter = _RegisterBits(_REG_PACKET_CONFIG1, offset=1, bits=2) 
 

    mode_ready = _RegisterBits(_REG_IRQ_FLAGS1, offset=7) 
 

    rx_ready = _RegisterBits(_REG_IRQ_FLAGS1, offset=6) 
 

    tx_ready = _RegisterBits(_REG_IRQ_FLAGS1, offset=5) 
 

    dio_0_mapping = _RegisterBits(_REG_DIO_MAPPING1, offset=6, bits=2) 
 

    packet_sent = _RegisterBits(_REG_IRQ_FLAGS2, offset=3) 
 

    payload_ready = _RegisterBits(_REG_IRQ_FLAGS2, offset=2) 
 

 
  

    def __init__( 
 

        self, 



   
 

   
 

 

        spi, 
 

        cs, 
 

        reset, 
 

        frequency, 
 

        *, 
 

        sync_word=b"\x2D\xD4", 
 

        preamble_length=4, 
 

        encryption_key=None, 
 

        high_power=True, 
 

        baudrate=5000000 
 

    ): 
 

        self._tx_power = 13 
 

        self.high_power = high_power 
 

        # Device support SPI mode 0 (polarity & phase = 0) up to a max of 10mhz. 
 

        self._device = spidev.SPIDevice(spi, cs, baudrate=baudrate, polarity=0, phase=0) 
 

        # Setup reset as a digital output that's low. 
 

        self._reset = reset 
 

        self._reset.switch_to_output(value=False) 
 

        self.reset()  # Reset the chip. 
 

        # Check the version of the chip. 
 

        version = self._read_u8(_REG_VERSION) 
 

        if version != 0x24: 
 

            raise RuntimeError( 
 

                "Failed to find RFM69 with expected version, check wiring!" 
 

            ) 
 

        self.idle()  # Enter idle state. 
 

        # Setup the chip in a similar way to the RadioHead RFM69 library. 
 

        # Set FIFO TX condition to not empty and the default FIFO threshold to 15. 



   
 

   
 

 

        self._write_u8(_REG_FIFO_THRESH, 0b10001111) 
 

        # Configure low beta off. 
 

        self._write_u8(_REG_TEST_DAGC, 0x30) 
 

        # Disable boost. 
 

        self._write_u8(_REG_TEST_PA1, _TEST_PA1_NORMAL) 
 

        self._write_u8(_REG_TEST_PA2, _TEST_PA2_NORMAL) 
 

        # Set the syncronization word. 
 

        self.sync_word = sync_word 
 

        self.preamble_length = preamble_length  # Set the preamble length. 
 

        self.frequency_mhz = frequency  # Set frequency. 
 

        self.encryption_key = encryption_key  # Set encryption key. 
 

        # set radio configuration parameters 
 

        self._configure_radio() 
 

        # initialize last RSSI reading 
 

        self.last_rssi = 0.0 
 

        """The RSSI of the last received packet. Stored when the packet was received. 
 

           This instantaneous RSSI value may not be accurate once the 
 

           operating mode has been changed. 
 

        """ 
 

        # initialize timeouts and delays delays 
 

        self.ack_wait = 0.5 
 

        """The delay time before attempting a retry after not receiving an ACK""" 
 

        self.receive_timeout = 0.5 
 

        """The amount of time to poll for a received packet. 
 

           If no packet is received, the returned packet will be None 
 

        """ 
 

        self.xmit_timeout = 2.0 
 

        """The amount of time to wait for the HW to transmit the packet. 



   
 

   
 

 

           This is mainly used to prevent a hang due to a HW issue 
 

        """ 
 

        self.ack_retries = 5 
 

        """The number of ACK retries before reporting a failure.""" 
 

        self.ack_delay = 0.2 
 

        """The delay time before attemting to send an ACK. 
 

           If ACKs are being missed try setting this to .1 or .2. 
 

        """ 
 

        # initialize sequence number counter for reliabe datagram mode 
 

        self.sequence_number = 0 
 

        # create seen Ids list 
 

        self.seen_ids = bytearray(256) 
 

        # initialize packet header 
 

        # node address - default is broadcast 
 

        self.node = _RH_BROADCAST_ADDRESS 
 

        """The default address of this Node. (0-255). 
 

           If not 255 (0xff) then only packets address to this node will be accepted. 
 

           First byte of the RadioHead header. 
 

        """ 
 

        # destination address - default is broadcast 
 

        self.destination = _RH_BROADCAST_ADDRESS 
 

        """The default destination address for packet transmissions. (0-255). 
 

           If 255 (0xff) then any receiving node should accept the packet. 
 

           Second byte of the RadioHead header. 
 

        """ 
 

        # ID - contains seq count for reliable datagram mode 
 

        self.identifier = 0 
 

        """Automatically set to the sequence number when send_with_ack() used. 



   
 

   
 

 

           Third byte of the RadioHead header. 
 

        """ 
 

        # flags - identifies ack/reetry packet for reliable datagram mode 
 

        self.flags = 0 
 

        """Upper 4 bits reserved for use by Reliable Datagram Mode. 
 

           Lower 4 bits may be used to pass information. 
 

           Fourth byte of the RadioHead header. 
 

        """ 
 

 
  

    def _configure_radio(self): 
 

        # Configure modulation for RadioHead library GFSK_Rb250Fd250 mode 
 

        # by default.  Users with advanced knowledge can manually reconfigure 
 

        # for any other mode (consulting the datasheet is absolutely 
 

        # necessary!). 
 

        self.data_mode = 0b00  # Packet mode 
 

        self.modulation_type = 0b00  # FSK modulation 
 

        self.modulation_shaping = 0b01  # Gaussian filter, BT=1.0 
 

        self.bitrate = 250000  # 250kbs 
 

        self.frequency_deviation = 250000  # 250khz 
 

        self.rx_bw_dcc_freq = 0b111  # RxBw register = 0xE0 
 

        self.rx_bw_mantissa = 0b00 
 

        self.rx_bw_exponent = 0b000 
 

        self.afc_bw_dcc_freq = 0b111  # AfcBw register = 0xE0 
 

        self.afc_bw_mantissa = 0b00 
 

        self.afc_bw_exponent = 0b000 
 

        self.packet_format = 1  # Variable length. 
 

        self.dc_free = 0b10  # Whitening 
 

        self.crc_on = 1  # CRC enabled 



   
 

   
 

 

        self.crc_auto_clear = 0  # Clear FIFO on CRC fail 
 

        self.address_filtering = 0b00  # No address filtering 
 

        # Set transmit power to 13 dBm, a safe value any module supports. 
 

        self.tx_power = 13 
 

 
  

    # pylint: disable=no-member 
 

    # Reconsider this disable when it can be tested. 
 

    def _read_into(self, address, buf, length=None): 
 

        # Read a number of bytes from the specified address into the provided 
 

        # buffer.  If length is not specified (the default) the entire buffer 
 

        # will be filled. 
 

        if length is None: 
 

            length = len(buf) 
 

        with self._device as device: 
 

            self._BUFFER[0] = address & 0x7F  # Strip out top bit to set 0 
 

            # value (read). 
 

            device.write(self._BUFFER, end=1) 
 

            device.readinto(buf, end=length) 
 

 
  

    def _read_u8(self, address): 
 

        # Read a single byte from the provided address and return it. 
 

        self._read_into(address, self._BUFFER, length=1) 
 

        return self._BUFFER[0] 
 

 
  

    def _write_from(self, address, buf, length=None): 
 

        # Write a number of bytes to the provided address and taken from the 
 

        # provided buffer.  If no length is specified (the default) the entire 
 

        # buffer is written. 



   
 

   
 

 

        if length is None: 
 

            length = len(buf) 
 

        with self._device as device: 
 

            self._BUFFER[0] = (address | 0x80) & 0xFF  # Set top bit to 1 to 
 

            # indicate a write. 
 

            device.write(self._BUFFER, end=1) 
 

            device.write(buf, end=length)  # send data 
 

 
  

    def _write_fifo_from(self, buf, length=None): 
 

        # Write a number of bytes to the transmit FIFO and taken from the 
 

        # provided buffer.  If no length is specified (the default) the entire 
 

        # buffer is written. 
 

        if length is None: 
 

            length = len(buf) 
 

        with self._device as device: 
 

            self._BUFFER[0] = (_REG_FIFO | 0x80) & 0xFF  # Set top bit to 1 to 
 

            # indicate a write. 
 

            self._BUFFER[1] = length & 0xFF  # Set packt length 
 

            device.write(self._BUFFER, end=2)  # send address and lenght) 
 

            device.write(buf, end=length)  # send data 
 

 
  

    def _write_u8(self, address, val): 
 

        # Write a byte register to the chip.  Specify the 7-bit address and the 
 

        # 8-bit value to write to that address. 
 

        with self._device as device: 
 

            self._BUFFER[0] = (address | 0x80) & 0xFF  # Set top bit to 1 to 
 

            # indicate a write. 
 

            self._BUFFER[1] = val & 0xFF 



   
 

   
 

 

            device.write(self._BUFFER, end=2) 
 

 
  

    def reset(self): 
 

        """Perform a reset of the chip.""" 
 

        # See section 7.2.2 of the datasheet for reset description. 
 

        self._reset.value = True 
 

        time.sleep(0.0001)  # 100 us 
 

        self._reset.value = False 
 

        time.sleep(0.005)  # 5 ms 
 

 
  

    def idle(self): 
 

        """Enter idle standby mode (switching off high power amplifiers if 

necessary).""" 
 

        # Like RadioHead library, turn off high power boost if enabled. 
 

        if self._tx_power >= 18: 
 

            self._write_u8(_REG_TEST_PA1, _TEST_PA1_NORMAL) 
 

            self._write_u8(_REG_TEST_PA2, _TEST_PA2_NORMAL) 
 

        self.operation_mode = STANDBY_MODE 
 

 
  

    def sleep(self): 
 

        """Enter sleep mode.""" 
 

        self.operation_mode = SLEEP_MODE 
 

 
  

    def listen(self): 
 

        """Listen for packets to be received by the chip.  Use :py:func:`receive` to 

listen, wait 
 

           and retrieve packets as they're available. 
 

        """ 
 

        # Like RadioHead library, turn off high power boost if enabled. 



   
 

   
 

 

        if self._tx_power >= 18: 
 

            self._write_u8(_REG_TEST_PA1, _TEST_PA1_NORMAL) 
 

            self._write_u8(_REG_TEST_PA2, _TEST_PA2_NORMAL) 
 

        # Enable payload ready interrupt for D0 line. 
 

        self.dio_0_mapping = 0b01 
 

        # Enter RX mode (will clear FIFO!). 
 

        self.operation_mode = RX_MODE 
 

 
  

    def transmit(self): 
 

        """Transmit a packet which is queued in the FIFO.  This is a low level function 

for 
 

           entering transmit mode and more.  For generating and transmitting a packet of 

data use 
 

           :py:func:`send` instead. 
 

        """ 
 

        # Like RadioHead library, turn on high power boost if enabled. 
 

        if self._tx_power >= 18: 
 

            self._write_u8(_REG_TEST_PA1, _TEST_PA1_BOOST) 
 

            self._write_u8(_REG_TEST_PA2, _TEST_PA2_BOOST) 
 

        # Enable packet sent interrupt for D0 line. 
 

        self.dio_0_mapping = 0b00 
 

        # Enter TX mode (will clear FIFO!). 
 

        self.operation_mode = TX_MODE 
 

 
  

    @property 
 

    def temperature(self): 
 

        """The internal temperature of the chip in degrees Celsius. Be warned this is 

not 
 

           calibrated or very accurate. 



   
 

   
 

 

           .. warning:: Reading this will STOP any receiving/sending that might be 

happening! 
 

        """ 
 

        # Start a measurement then poll the measurement finished bit. 
 

        self.temp_start = 1 
 

        while self.temp_running > 0: 
 

            pass 
 

        # Grab the temperature value and convert it to Celsius. 
 

        # This uses the same observed value formula from the Radiohead library. 
 

        temp = self._read_u8(_REG_TEMP2) 
 

        return 166.0 - temp 
 

 
  

    @property 
 

    def operation_mode(self): 
 

        """The operation mode value.  Unless you're manually controlling the chip you 

shouldn't 
 

           change the operation_mode with this property as other side-effects are 

required for 
 

           changing logical modes--use :py:func:`idle`, :py:func:`sleep`, 

:py:func:`transmit`, 
 

           :py:func:`listen` instead to signal intent for explicit logical modes. 
 

        """ 
 

        op_mode = self._read_u8(_REG_OP_MODE) 
 

        return (op_mode >> 2) & 0b111 
 

 
  

    @operation_mode.setter 
 

    def operation_mode(self, val): 
 

        assert 0 <= val <= 4 
 

        # Set the mode bits inside the operation mode register. 
 

        op_mode = self._read_u8(_REG_OP_MODE) 



   
 

   
 

 

        op_mode &= 0b11100011 
 

        op_mode |= val << 2 
 

        self._write_u8(_REG_OP_MODE, op_mode) 
 

        # Wait for mode to change by polling interrupt bit. 
 

        while not self.mode_ready: 
 

            pass 
 

 
  

    @property 
 

    def sync_word(self): 
 

        """The synchronization word value.  This is a byte string up to 8 bytes long (64 

bits) 
 

           which indicates the synchronization word for transmitted and received 

packets. Any 
 

           received packet which does not include this sync word will be ignored. The 

default value 
 

           is 0x2D, 0xD4 which matches the RadioHead RFM69 library. Setting a value of 

None will 
 

           disable synchronization word matching entirely. 
 

        """ 
 

        # Handle when sync word is disabled.. 
 

        if not self.sync_on: 
 

            return None 
 

        # Sync word is not disabled so read the current value. 
 

        sync_word_length = self.sync_size + 1  # Sync word size is offset by 1 
 

        # according to datasheet. 
 

        sync_word = bytearray(sync_word_length) 
 

        self._read_into(_REG_SYNC_VALUE1, sync_word) 
 

        return sync_word 
 

 
  

    @sync_word.setter 



   
 

   
 

 

    def sync_word(self, val): 
 

        # Handle disabling sync word when None value is set. 
 

        if val is None: 
 

            self.sync_on = 0 
 

        else: 
 

            # Check sync word is at most 8 bytes. 
 

            assert 1 <= len(val) <= 8 
 

            # Update the value, size and turn on the sync word. 
 

            self._write_from(_REG_SYNC_VALUE1, val) 
 

            self.sync_size = len(val) - 1  # Again sync word size is offset by 
 

            # 1 according to datasheet. 
 

            self.sync_on = 1 
 

 
  

    @property 
 

    def preamble_length(self): 
 

        """The length of the preamble for sent and received packets, an unsigned 16-bit 

value. 
 

           Received packets must match this length or they are ignored! Set to 4 to 

match the 
 

           RadioHead RFM69 library. 
 

        """ 
 

        msb = self._read_u8(_REG_PREAMBLE_MSB) 
 

        lsb = self._read_u8(_REG_PREAMBLE_LSB) 
 

        return ((msb << 8) | lsb) & 0xFFFF 
 

 
  

    @preamble_length.setter 
 

    def preamble_length(self, val): 
 

        assert 0 <= val <= 65535 
 

        self._write_u8(_REG_PREAMBLE_MSB, (val >> 8) & 0xFF) 



   
 

   
 

 

        self._write_u8(_REG_PREAMBLE_LSB, val & 0xFF) 
 

 
  

    @property 
 

    def frequency_mhz(self): 
 

        """The frequency of the radio in Megahertz. Only the allowed values for your 

radio must be 
 

           specified (i.e. 433 vs. 915 mhz)! 
 

        """ 
 

        # FRF register is computed from the frequency following the datasheet. 
 

        # See section 6.2 and FRF register description. 
 

        # Read bytes of FRF register and assemble into a 24-bit unsigned value. 
 

        msb = self._read_u8(_REG_FRF_MSB) 
 

        mid = self._read_u8(_REG_FRF_MID) 
 

        lsb = self._read_u8(_REG_FRF_LSB) 
 

        frf = ((msb << 16) | (mid << 8) | lsb) & 0xFFFFFF 
 

        frequency = (frf * _FSTEP) / 1000000.0 
 

        return frequency 
 

 
  

    @frequency_mhz.setter 
 

    def frequency_mhz(self, val): 
 

        assert 290 <= val <= 1020 
 

        # Calculate FRF register 24-bit value using section 6.2 of the datasheet. 
 

        frf = int((val * 1000000.0) / _FSTEP) & 0xFFFFFF 
 

        # Extract byte values and update registers. 
 

        msb = frf >> 16 
 

        mid = (frf >> 8) & 0xFF 
 

        lsb = frf & 0xFF 
 

        self._write_u8(_REG_FRF_MSB, msb) 
 

        self._write_u8(_REG_FRF_MID, mid) 



   
 

   
 

 

        self._write_u8(_REG_FRF_LSB, lsb) 
 

 
  

    @property 
 

    def encryption_key(self): 
 

        """The AES encryption key used to encrypt and decrypt packets by the chip. This 

can be set 
 

           to None to disable encryption (the default), otherwise it must be a 16 byte 

long byte 
 

           string which defines the key (both the transmitter and receiver must use the 

same key 
 

           value). 
 

        """ 
 

        # Handle if encryption is disabled. 
 

        if self.aes_on == 0: 
 

            return None 
 

        # Encryption is enabled so read the key and return it. 
 

        key = bytearray(16) 
 

        self._read_into(_REG_AES_KEY1, key) 
 

        return key 
 

 
  

    @encryption_key.setter 
 

    def encryption_key(self, val): 
 

        # Handle if unsetting the encryption key (None value). 
 

        if val is None: 
 

            self.aes_on = 0 
 

        else: 
 

            # Set the encryption key and enable encryption. 
 

            assert len(val) == 16 
 

            self._write_from(_REG_AES_KEY1, val) 



   
 

   
 

 

            self.aes_on = 1 
 

 
  

    @property 
 

    def tx_power(self): 
 

        """The transmit power in dBm. Can be set to a value from -2 to 20 for high power 

devices 
 

           (RFM69HCW, high_power=True) or -18 to 13 for low power devices. Only integer 

power 
 

           levels are actually set (i.e. 12.5 will result in a value of 12 dBm). 
 

        """ 
 

        # Follow table 10 truth table from the datasheet for determining power 
 

        # level from the individual PA level bits and output power register. 
 

        pa0 = self.pa_0_on 
 

        pa1 = self.pa_1_on 
 

        pa2 = self.pa_2_on 
 

        if pa0 and not pa1 and not pa2: 
 

            # -18 to 13 dBm range 
 

            return -18 + self.output_power 
 

        if not pa0 and pa1 and not pa2: 
 

            # -2 to 13 dBm range 
 

            return -18 + self.output_power 
 

        if not pa0 and pa1 and pa2 and not self.high_power: 
 

            # 2 to 17 dBm range 
 

            return -14 + self.output_power 
 

        if not pa0 and pa1 and pa2 and self.high_power: 
 

            # 5 to 20 dBm range 
 

            return -11 + self.output_power 
 

        raise RuntimeError("Power amplifiers in unknown state!") 
 

 
 



   
 

   
 

 

    @tx_power.setter 
 

    def tx_power(self, val): 
 

        val = int(val) 
 

        # Determine power amplifier and output power values depending on 
 

        # high power state and requested power. 
 

        pa_0_on = 0 
 

        pa_1_on = 0 
 

        pa_2_on = 0 
 

        output_power = 0 
 

        if self.high_power: 
 

            # Handle high power mode. 
 

            assert -2 <= val <= 20 
 

            if val <= 13: 
 

                pa_1_on = 1 
 

                output_power = val + 18 
 

            elif 13 < val <= 17: 
 

                pa_1_on = 1 
 

                pa_2_on = 1 
 

                output_power = val + 14 
 

            else:  # power >= 18 dBm 
 

                # Note this also needs PA boost enabled separately! 
 

                pa_1_on = 1 
 

                pa_2_on = 1 
 

                output_power = val + 11 
 

        else: 
 

            # Handle non-high power mode. 
 

            assert -18 <= val <= 13 
 

            # Enable only power amplifier 0 and set output power. 



   
 

   
 

 

            pa_0_on = 1 
 

            output_power = val + 18 
 

        # Set power amplifiers and output power as computed above. 
 

        self.pa_0_on = pa_0_on 
 

        self.pa_1_on = pa_1_on 
 

        self.pa_2_on = pa_2_on 
 

        self.output_power = output_power 
 

        self._tx_power = val 
 

 
  

    @property 
 

    def rssi(self): 
 

        """The received strength indicator (in dBm). 
 

           May be inaccuate if not read immediatey. last_rssi contains the value read 

immediately 
 

           receipt of the last packet. 
 

        """ 
 

        # Read RSSI register and convert to value using formula in datasheet. 
 

        return -self._read_u8(_REG_RSSI_VALUE) / 2.0 
 

 
  

    @property 
 

    def bitrate(self): 
 

        """The modulation bitrate in bits/second (or chip rate if Manchester encoding is 

enabled). 
 

           Can be a value from ~489 to 32mbit/s, but see the datasheet for the exact 

supported 
 

           values. 
 

        """ 
 

        msb = self._read_u8(_REG_BITRATE_MSB) 
 

        lsb = self._read_u8(_REG_BITRATE_LSB) 



   
 

   
 

 

        return _FXOSC / ((msb << 8) | lsb) 
 

 
  

    @bitrate.setter 
 

    def bitrate(self, val): 
 

        assert (_FXOSC / 65535) <= val <= 32000000.0 
 

        # Round up to the next closest bit-rate value with addition of 0.5. 
 

        bitrate = int((_FXOSC / val) + 0.5) & 0xFFFF 
 

        self._write_u8(_REG_BITRATE_MSB, bitrate >> 8) 
 

        self._write_u8(_REG_BITRATE_LSB, bitrate & 0xFF) 
 

 
  

    @property 
 

    def frequency_deviation(self): 
 

        """The frequency deviation in Hertz.""" 
 

        msb = self._read_u8(_REG_FDEV_MSB) 
 

        lsb = self._read_u8(_REG_FDEV_LSB) 
 

        return _FSTEP * ((msb << 8) | lsb) 
 

 
  

    @frequency_deviation.setter 
 

    def frequency_deviation(self, val): 
 

        assert 0 <= val <= (_FSTEP * 16383)  # fdev is a 14-bit unsigned value 
 

        # Round up to the next closest integer value with addition of 0.5. 
 

        fdev = int((val / _FSTEP) + 0.5) & 0x3FFF 
 

        self._write_u8(_REG_FDEV_MSB, fdev >> 8) 
 

        self._write_u8(_REG_FDEV_LSB, fdev & 0xFF) 
 

 
  

    def send( 
 

        self, 
 

        data, 



   
 

   
 

 

        *, 
 

        keep_listening=False, 
 

        destination=None, 
 

        node=None, 
 

        identifier=None, 
 

        flags=None 
 

    ): 
 

        """Send a string of data using the transmitter. 
 

           You can only send 60 bytes at a time 
 

           (limited by chip's FIFO size and appended headers). 
 

           This appends a 4 byte header to be compatible with the RadioHead library. 
 

           The header defaults to using the initialized attributes: 
 

           (destination,node,identifier,flags) 
 

           It may be temporarily overidden via the kwargs - 

destination,node,identifier,flags. 
 

           Values passed via kwargs do not alter the attribute settings. 
 

           The keep_listening argument should be set to True if you want to start 

listening 
 

           automatically after the packet is sent. The default setting is False. 
 

           Returns: True if success or False if the send timed out. 
 

        """ 
 

        # Disable pylint warning to not use length as a check for zero. 
 

        # This is a puzzling warning as the below code is clearly the most 
 

        # efficient and proper way to ensure a precondition that the provided 
 

        # buffer be within an expected range of bounds.  Disable this check. 
 

        # pylint: disable=len-as-condition 
 

        assert 0 < len(data) <= 60 
 

        # pylint: enable=len-as-condition 
 

        self.idle()  # Stop receiving to clear FIFO and keep it clear. 



   
 

   
 

 

        # Fill the FIFO with a packet to send. 
 

        # Combine header and data to form payload 
 

        payload = bytearray(4) 
 

        if destination is None:  # use attribute 
 

            payload[0] = self.destination 
 

        else:  # use kwarg 
 

            payload[0] = destination 
 

        if node is None:  # use attribute 
 

            payload[1] = self.node 
 

        else:  # use kwarg 
 

            payload[1] = node 
 

        if identifier is None:  # use attribute 
 

            payload[2] = self.identifier 
 

        else:  # use kwarg 
 

            payload[2] = identifier 
 

        if flags is None:  # use attribute 
 

            payload[3] = self.flags 
 

        else:  # use kwarg 
 

            payload[3] = flags 
 

        payload = payload + data 
 

        # Write payload to transmit fifo 
 

        self._write_fifo_from(payload) 
 

        # Turn on transmit mode to send out the packet. 
 

        self.transmit() 
 

        # Wait for packet sent interrupt with explicit polling (not ideal but 
 

        # best that can be done right now without interrupts). 
 

        start = time.monotonic() 
 

        timed_out = False 



   
 

   
 

 

        while not timed_out and not self.packet_sent: 
 

            if (time.monotonic() - start) >= self.xmit_timeout: 
 

                timed_out = True 
 

        # Listen again if requested. 
 

        if keep_listening: 
 

            self.listen() 
 

        else:  # Enter idle mode to stop receiving other packets. 
 

            self.idle() 
 

        return not timed_out 
 

 
  

    def send_with_ack(self, data): 
 

        """Reliable Datagram mode: 
 

           Send a packet with data and wait for an ACK response. 
 

           The packet header is automatically generated. 
 

           If enabled, the packet transmission will be retried on failure 
 

        """ 
 

        if self.ack_retries: 
 

            retries_remaining = self.ack_retries 
 

        else: 
 

            retries_remaining = 1 
 

        got_ack = False 
 

        self.sequence_number = (self.sequence_number + 1) & 0xFF 
 

        while not got_ack and retries_remaining: 
 

            self.identifier = self.sequence_number 
 

            self.send(data, keep_listening=True) 
 

            # Don't look for ACK from Broadcast message 
 

            if self.destination == _RH_BROADCAST_ADDRESS: 
 

                got_ack = True 



   
 

   
 

 

            else: 
 

                # wait for a packet from our destination 
 

                ack_packet = self.receive(timeout=self.ack_wait, with_header=True) 
 

                if ack_packet is not None: 
 

                    if ack_packet[3] & _RH_FLAGS_ACK: 
 

                        # check the ID 
 

                        if ack_packet[2] == self.identifier: 
 

                            got_ack = True 
 

                            break 
 

            # pause before next retry -- random delay 
 

            if not got_ack: 
 

                # delay by random amount before next try 
 

                time.sleep(self.ack_wait + self.ack_wait * random.random()) 
 

            retries_remaining = retries_remaining - 1 
 

            # set retry flag in packet header 
 

            self.flags |= _RH_FLAGS_RETRY 
 

        self.flags = 0  # clear flags 
 

        return got_ack 
 

 
  

    # pylint: disable=too-many-branches 
 

    def receive( 
 

        self, *, keep_listening=True, with_ack=False, timeout=None, with_header=False 
 

    ): 
 

        """Wait to receive a packet from the receiver. If a packet is found the payload 

bytes 
 

           are returned, otherwise None is returned (which indicates the timeout elapsed 

with no 
 

           reception). 



   
 

   
 

 

           If keep_listening is True (the default) the chip will immediately enter 

listening mode 
 

           after reception of a packet, otherwise it will fall back to idle mode and 

ignore any 
 

           future reception. 
 

           All packets must have a 4 byte header for compatibilty with the 
 

           RadioHead library. 
 

           The header consists of 4 bytes (To,From,ID,Flags). The default setting will  

strip 
 

           the header before returning the packet to the caller. 
 

           If with_header is True then the 4 byte header will be returned with the 

packet. 
 

           The payload then begins at packet[4]. 
 

           If with_ack is True, send an ACK after receipt (Reliable Datagram mode) 
 

        """ 
 

        timed_out = False 
 

        if timeout is None: 
 

            timeout = self.receive_timeout 
 

        if timeout is not None: 
 

            # Wait for the payload_ready signal.  This is not ideal and will 
 

            # surely miss or overflow the FIFO when packets aren't read fast 
 

            # enough, however it's the best that can be done from Python without 
 

            # interrupt supports. 
 

            # Make sure we are listening for packets. 
 

            self.listen() 
 

            start = time.monotonic() 
 

            timed_out = False 
 

            while not timed_out and not self.payload_ready: 
 

                if (time.monotonic() - start) >= timeout: 
 

                    timed_out = True 



   
 

   
 

 

        # Payload ready is set, a packet is in the FIFO. 
 

        packet = None 
 

        # save last RSSI reading 
 

        self.last_rssi = self.rssi 
 

        # Enter idle mode to stop receiving other packets. 
 

        self.idle() 
 

        if not timed_out: 
 

            # Read the length of the FIFO. 
 

            fifo_length = self._read_u8(_REG_FIFO) 
 

            # Handle if the received packet is too small to include the 4 byte 
 

            # RadioHead header and at least one byte of data --reject this packet and 

ignore it. 
 

            if fifo_length > 0:  # read and clear the FIFO if anything in it 
 

                packet = bytearray(fifo_length) 
 

                self._read_into(_REG_FIFO, packet) 
 

            if fifo_length < 5: 
 

                packet = None 
 

            else: 
 

                if ( 
 

                    self.node != _RH_BROADCAST_ADDRESS 
 

                    and packet[0] != _RH_BROADCAST_ADDRESS 
 

                    and packet[0] != self.node 
 

                ): 
 

                    packet = None 
 

                # send ACK unless this was an ACK or a broadcast 
 

                elif ( 
 

                    with_ack 
 

                    and ((packet[3] & _RH_FLAGS_ACK) == 0) 
 

                    and (packet[0] != _RH_BROADCAST_ADDRESS) 



   
 

   
 

 

                ): 
 

                    # delay before sending Ack to give receiver a chance to get ready 
 

                    if self.ack_delay is not None: 
 

                        time.sleep(self.ack_delay) 
 

                    # send ACK packet to sender 
 

                    data = bytes("!", "UTF-8") 
 

                    self.send( 
 

                        data, 
 

                        destination=packet[1], 
 

                        node=packet[0], 
 

                        identifier=packet[2], 
 

                        flags=(packet[3] | _RH_FLAGS_ACK), 
 

                    ) 
 

                    # reject Retries if we have seen this idetifier from this source 

before 
 

                    if (self.seen_ids[packet[1]] == packet[2]) and ( 
 

                        packet[3] & _RH_FLAGS_RETRY 
 

                    ): 
 

                        packet = None 
 

                    else:  # save the packet identifier for this source 
 

                        self.seen_ids[packet[1]] = packet[2] 
 

                if ( 
 

                    not with_header and packet is not None 
 

                ):  # skip the header if not wanted 
 

                    packet = packet[4:] 
 

        # Listen again if necessary and return the result packet. 
 

        if keep_listening: 
 

            self.listen() 
 

        else: 



   
 

   
 

 

            # Enter idle mode to stop receiving other packets. 
 

            self.idle() 
 

        return packet 

 

RADIO – radio.py 

#!/usr/bin/env 

python3 
 

 
  

''' 
 

API for interacting with Radio subsystem 
 

''' 
 

 
  

import time 
 

import re 
 

import logging 
 

import math 
 

 
  

# Adafruit 
 

import board 
 

import busio 
 

import digitalio 
 

import adafruit_rfm69 
 

 
  

COMMANDS = {  
 

    "ping": '\x00' 
 

 
  

} 
 

 
 



   
 

   
 

 

 
  

class RADIO: 
 

 
  

    def __init__(self, sync_word=b"\x2D\xD4", frequency=915.0): 
 

        """ Initialize radio and serial connection """ 
 

 
  

        self.logger = logging.getLogger("radio-service") 
 

        self.logger.setLevel(logging.DEBUG) 
 

         
 

        self.frequency = frequency 
 

        self.sync_word = sync_word 
 

 
  

        self.timeout_sec = 60 
 

 
  

        #self.baud_rate = 9600 
 

 
  

        # set pins 
 

        self.cs = digitalio.DigitalInOut(board.P9_25) 
 

        self.reset = digitalio.DigitalInOut(board.P9_27) 
 

        self.led = digitalio.DigitalInOut(board.P8_8) 
 

 
  

        # set pin direction 
 

        self.cs.direction = digitalio.Direction.OUTPUT 
 

        self.reset.direction = digitalio.Direction.OUTPUT 
 

        self.led.direction = digitalio.Direction.OUTPUT 
 

 
  

        # setup spi 
 

        self.spi = busio.SPI(board.SCLK_1, board.MOSI_1, board.MISO_1) 



   
 

   
 

 

 
  

        # using Adafruit rfm 69 radio module 
 

        self.radio = adafruit_rfm69.RFM69(self.spi, self.cs, self.reset, 

self.frequency, sync_word=self.sync_word) 
 

 
  

        # set encryption key - must be same on other end at other transceiver 
 

        self.radio.encryption_key = 

(b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08") 
 

 
  

        self.logger.debug("Finished radio initialization.") 
 

 
  

    def ping(self): 
 

        """ For testing communications service connection """ 
 

        return "pong" 
 

     
 

    def timeout(self, start_time): 
 

        if (time.time() - start_time > self.timeout_sec): 
 

            return True 
 

        else: 
 

            return False 
 

 
  

    def write(self, frame): 
 

        start_time = time.time() 
 

        # keep sending frame until we get confirmed returned acknowledgement 
 

        while (self.radio.send_with_ack(frame) == False): 
 

            # check for timeout 
 

            if self.timeout(start_time): 
 

                self.logger.warn("Timeout trying to write packet to radio.") 
 

                return False 



   
 

   
 

 

            else: 
 

                continue 
 

 
  

        self.logger.debug("Wrote packet to radio: {}".format(frame)) 
 

        return True 
 

 
  

    def read(self): 
 

        start_time = time.time() 
 

        while (True): 
 

            frame = self.radio.receive() 
 

 
  

            # check for timeout 
 

            if self.timeout(start_time): 
 

                self.logger.warn("Timeout trying to read a packet.") 
 

                return False, [] 
 

 
  

            if frame is None: 
 

                continue 
 

            else: 
 

                break 
 

         
 

        self.logger.debug("Read packet: {}".format(frame)) 
 

        return True, frame 
 

             
 

 
  

    def downlink_image(self, filename): 
 

 
  

        with open(filename, "rb") as image: 



   
 

   
 

 

            f = image.read() 
 

            b = bytearray(f) 
 

 
  

            print(b) 
 

 
  

            size = 60 
 

            num = math.ceil(len(b)/60) 
 

 
  

            # split image into separate frames 
 

            frames = [] 
 

            for i in range(num): 
 

                frames.append(b[(i*size):((i+1)*size)]) 
 

                print("Frame {}: {}".format(i, frames[i])) 
 

 
  

            for n, frame in enumerate(frames): 
 

                while self.radio.send_with_ack(frame) is False: 
 

                    continue 
 

                print("Frame {}/{}".format(n, len(frames))) 
 

                time.sleep(0.1) 
 

 
  

            self.radio.send_with_ack(bytearray(b'\x00\x01')) 
 

            print("Sent {}".format(bytearray(b'\x00\x01'))) 
 

 
  

    # decode radio protocol (AX_25)         
 

    def decode(self, frame): 
 

        opcode = bytes(frame[:1]).decode('utf-8') 
 

        payload = bytes(frame[1:]).decode('utf-8') 
 

 
 



   
 

   
 

 

        #opcode = opcode.decode('utf-8') 
 

        #payload = opcode.decode('utf-8') 
 

 
  

        self.logger.debug("Decoded packet into opcode: {} payload: 

{}".format(opcode, payload)) 
 

        return opcode, payload 
 

 
  

    # encode message into radio protocol for sending (AX_25) 
 

    def encode(self, opcode, payload): 
 

        frame = bytearray() 
 

        frame.extend(bytearray(opcode, 'utf-8')) 
 

        frame.extend(bytearray(payload, 'utf-8')) 
 

 
  

        self.logger.debug("Encoded opcode: {} and payload: {} into frame: 

{}".format(opcode, payload, frame)) 
 

        return frame 
 

 
  

    def main(self): 
 

 
  

        self.logger.info("Starting main loop on radio for receiving packets") 
 

        while (True): 
 

            success, frame = self.read() 
 

 
  

            if not success: 
 

                continue 
 

 
  

            opcode, payload = self.decode(frame) 
 

 
  

            # received ping, send back acknowledgement 



   
 

   
 

 

            if (opcode == COMMANDS['ping']): 
 

                self.logger.debug("Got 'ping' command from ground station. 

Returning acknowledgement") 
 

                frame = self.encode(opcode, '\x00') 
 

            else: 
 

                self.logger.warn("Received command/opcode that is not in valid 

opcodes: {}.".format(opcode)) 
 

                continue 
 

 
  

            # return acknowledgement 
 

            self.write(frame) 
 

 
  

    def __exit__(self): 
 

        pass 

 

ADCS – adcs.py 

#!/usr/bin/env 

python3 
 

 
  

''' 
 

API for interacting with ADCS subsystem 
 

''' 
 

 
  

from obcserial import i2c 
 

import logging 
 

 
  

class ADCS: 
 

 
  

    def __init__(self): 



   
 

   
 

 

 
  

        self.logger = logging.getLogger("adcs-service") 
 

 
  

        # telemetry defaults 
 

        self._power = 0  # (OFF=0,ON=1,RESET=2) 
 

        self._mode = 0   # (IDLE=0,DETUMBLE=1,POINTING=2) 
 

        self._orientation = [1.0, 1.0, 1.0, 0.0, 0.0, 0.0] 
 

        self._spin = [1.0, 1.0, 1.0] 
 

 
  

        # ADCS initialize stuff here 
 

 
  

################ queries ################### 
 

    def ping(self): 
 

        # should send hardware a ping and expect a pong back 
 

        return "pong" 
 

 
  

    def power(self): 
 

        ############################################################# 
 

        # TODO: Get power state (ON=1, OFF=0, RESET=2) from ADCS here 
 

        ############################################################# 
 

        return self._power 
 

 
  

    def mode(self): 
 

        #################################################################### 
 

        # TODO: Get mode state (IDLE=1,DETUMBLE=0,POINTING=2) from ADCS here 
 

        #################################################################### 
 

        return self._mode 
 

 
 



   
 

   
 

 

    def orientation(self): 
 

        ############################################################# 
 

        # TODO: Get orientation (x,y,z,yaw,pitch,roll) from ADCS here 
 

        ############################################################# 
 

        return self._orientation 
 

 
  

    def spin(self): 
 

        ####################################### 
 

        # TODO: Get spin (x,y,z) from ADCS here 
 

        ####################################### 
 

        return self._spin 
 

 
  

################ mutations ################# 
 

    # Controls the power state of the ADCS 
 

    def controlPower(self, controlPowerInput): 
 

        success = False 
 

        errors = [] 
 

        try: 
 

            self.logger.info("Sending new power state to ADCS...") 
 

            power=controlPowerInput.power 
 

            #################################################################### 
 

            # TODO: Set mode state (IDLE=1,DETUMBLE=0,POINTING=2) from ADCS here 
 

            #################################################################### 
 

            success = True 
 

            errors = [] 
 

            self._power = power 
 

 
  

            if success: 



   
 

   
 

 

                self.logger.info("Set ADCS power state={}".format(power)) 
 

            else: 
 

                self.logger.error("Unable to set ADCS power 

state={}".format(power)) 
 

         
 

        except Exception as e: 
 

            self.logger.error("Exception trying to set ADCS power state={} : 

{}".format(power, str(e))) 
 

            success = False 
 

            errors = [str(e)] 
 

         
 

        finally:  
 

            return success, errors 
 

 
  

    def setMode(self, setModeInput): 
 

        success = False 
 

        errors = [] 
 

        try: 
 

            self.logger.info("Sending new mode to ADCS...") 
 

            mode=setModeInput.mode 
 

            #################################################################### 
 

            # TODO: Set mode state (IDLE=1,DETUMBLE=0,POINTING=2) from ADCS here 
 

            #################################################################### 
 

            success = True 
 

            errors = [] 
 

            self._mode = mode 
 

 
  

            if success: 
 

                self.logger.info("Set ADCS mode={}".format(mode)) 



   
 

   
 

 

            else: 
 

                self.logger.error("Unable to set ADCS mode={}".format(mode)) 
 

         
 

        except Exception as e: 
 

            self.logger.error("Exception trying to set ADCS mode={} : 

{}".format(mode, str(e))) 
 

            success = False 
 

            errors = [str(e)] 
 

         
 

        finally:  
 

            return success, errors 

 

EPS – eps.py 

  

  

 

#!/usr/bin/env python3 
 

 
  

''' 
 

API for interacting with EPS subsystem 
 

''' 
 

 
  

import time 
 

import re 
 

import logging 
 

 
  

# for controlling power ports 
 

from obcserial import gpio 
 

# for reading battery levels through ADC 



   
 

   
 

 

from obcapi import ADS1115 
 

 
  

class EPS: 
 

 
  

    def __init__(self): 
 

 
  

        self.logger = logging.getLogger("eps-service") 
 

 
  

########################### SUNFLOWER SOLAR POWER MANAGER ############################## 
 

        # initialize GPIO pins 
 

        self.PORT1 = gpio.GPIO(66) 
 

        self.PORT2 = gpio.GPIO(69) 
 

        self.PORT3 = gpio.GPIO(45) 
 

 
  

        self.fake_GPIO = True 
 

 
  

        self.PORT1.release() 
 

        self.PORT2.release() 
 

        self.PORT3.release() 
 

 
  

        # attach GPIO pins 
 

        if self.PORT1.attach(): 
 

            if self.PORT2.attach(): 
 

                if self.PORT3.attach(): 
 

                    self.fake_GPIO = False 
 

 
  

        if self.fake_GPIO == False: 
 

            # set GPIO direction 



   
 

   
 

 

            self.PORT1.direction(1) 
 

            self.PORT2.direction(1) 
 

            self.PORT3.direction(1)     
 

 
  

            # make sure everything is off 
 

            self.PORT1.off() 
 

            self.PORT2.off() 
 

            self.PORT3.off() 
 

 
  

        self.power1 = False # power to output 1 off 
 

        self.power2 = False # power to output 2 off 
 

        self.power3 = False # power to output 3 off 
 

 
  

############################# ADAFRUIT ADS1115 ADC ###################################### 
 

         
 

        # using Adafruit ADS1115 16-bit, 4 channel ADC 
 

        self.adc = ADS1115.ADS1115() 
 

 
  

        # Start continuous ADC conversions on channel 0 using the previously set gain 
 

        # value.  Note you can also pass an optional data_rate parameter, see the 

simpletest.py 
 

        # example and read_adc function for more infromation. 
 

 
  

        # Choose a gain of 1 for reading voltages from 0 to 4.09V. 
 

        # Or pick a different gain to change the range of voltages that are read: 
 

        #  - 2/3 = +/-6.144V 
 

        #  -   1 = +/-4.096V 
 

        #  -   2 = +/-2.048V 
 

        #  -   4 = +/-1.024V 



   
 

   
 

 

        #  -   8 = +/-0.512V 
 

        #  -  16 = +/-0.256V 
 

        self.adc.start_adc(channel=0, gain=1) 
 

 
  

        # Once continuous ADC conversions are started you can call get_last_result() to 
 

        # retrieve the latest result, or stop_adc() to stop conversions. 
 

 
  

        # adc reading on full battery 
 

        # usually 2^16/2 but using a voltage divider 
 

        self.max_adc_reading = 24490 
 

 
  

        # max voltage from sunflower solar manager that means full battery 
 

        self.full_battery_voltage = 4.2 
 

 
  

    # test service connection 
 

    def ping(self): 
 

        return "pong" 
 

 
  

    # control power of ports 
 

    def controlPort(self, controlPortInput): 
 

        if self.fake_GPIO: 
 

            if (controlPortInput.power == 1): 
 

                self.power1 = True 
 

            elif (controlPortInput.power == 2): 
 

                self.power2 = True 
 

            elif (controlPortInput.power == 3): 
 

                self.power3 = True 
 

            return True 



   
 

   
 

 

           
 

        if (controlPortInput.port == 1): 
 

            if (controlPortInput.power == 1): 
 

                self.PORT1.on() 
 

                self.power1 = True 
 

            else: 
 

                self.PORT1.off() 
 

                self.power1 = False 
 

            return True 
 

        elif (controlPortInput.port == 2): 
 

            if (controlPortInput.power == 1): 
 

                self.PORT2.on() 
 

                self.power2 = True 
 

            else: 
 

                self.PORT2.off() 
 

                self.power2 = False 
 

            return True 
 

        elif (controlPortInput.port == 3): 
 

            if (controlPortInput.power == 1): 
 

                self.PORT3.on() 
 

                self.power3= True 
 

            else: 
 

                self.PORT3.off() 
 

                self.power3 = False 
 

            return True 
 

        else: 
 

            return False 
 

 
 



   
 

   
 

 

    # get power state of all ports 
 

    def power(self): 
 

        return self.power1, self.power2, self.power3 
 

 
  

    # get current battery level as percentage 
 

    def battery(self): 
 

 
  

        # read ADC value 
 

        value = self.adc.get_last_result() 
 

        # get percentage of highest reading 
 

        if value < self.max_adc_reading: 
 

            percentage = float(value)/float(self.max_adc_reading) 
 

        else: 
 

            percentage = 1.0 
 

 
  

        # convert to voltage 
 

        voltage = percentage * self.full_battery_voltage 
 

 
  

        return int(percentage * 100) 
 

 
  

    # release GPIO pins 
 

    def __exit__(self): 
 

        if self.fake_GPIO == False: 
 

            self.PORT1.release() 
 

            self.PORT2.release() 
 

            self.PORT3.release() 
 

 
  

        # stop adc 



   
 

   
 

 

        self.adc.stop_adc() 

 

PAYLOAD – payload.py 

#!/usr/bin/env 

python3 
 

 
  

''' 
 

API for interacting with Payload subsystem 
 

''' 
 

 
  

import time 
 

import re 
 

from obcserial import uart 
 

from obcapi import config 
 

import app_api 
 

 
  

class Payload: 
 

 
  

    def __init__(self): 
 

 
  

        self.logger = app_api.logging_setup("payload-api") 
 

        self.use_uart = False 
 

        try:  
 

            self.UART = uart.UART(1) 
 

            self.use_uart = True 
 

        except Exception as e: 
 

            self.logger.error("FATAL ERROR: Unable to open UART port {}:{}. No 

communication with payload. Using fake connection...".format(type(e).__name__, 

str(e))) 



   
 

   
 

 

 
  

    def read(self): 
 

        if self.use_uart: 
 

            success, message = self.UART.read() 
 

            if success: 
 

                return self.unpack(message) 
 

            return None 
 

        else: 
 

            return self.unpack(input("Enter fake serial input:")) 
 

 
  

    def send_command(self, command): 
 

        if self.write(command): 
 

            for i in range(config.RETRY): 
 

                response = self.read() 
 

                if response == config.RETURN_CODE[0]: 
 

                    self.logger.info("Got back {} message from payload sending 

command: {}.".format(response, command)) 
 

                    return True 
 

                elif response == config.RETURN_CODE[1]: 
 

                    self.logger.warn("Got back {} message from payload sending 

command: {}.".format(response, command)) 
 

                    return False 
 

            return False 
 

        else: 
 

            self.logger.warn("Error writing {} over UART.".format(command)) 
 

            return False 
 

 
  

    def read_result(self, expected_response): 
 

        for i in range(config.RETRY): 



   
 

   
 

 

            response = self.read() 
 

            if response == expected_response: 
 

                self.logger.info("Got back successful {} message from 

payload.".format(response)) 
 

                return True 
 

            elif response == config.RETURN_CODE[1]: 
 

                self.logger.warn("Got back {} message from payload sending 

command.".format(response)) 
 

                return False 
 

            else: 
 

                self.logger.warn("Got back {} message from payload but expecting: 

{}.".format(response, expected_response)) 
 

        return False 
 

 
  

    def pack(self, message): 
 

        return "<<" + message + ">>" 
 

     
 

    def unpack(self, message): 
 

        commands = re.findall(config.REGEX, message) 
 

        if len(commands) != 0: 
 

            return commands[0] 
 

        else: 
 

            return None 
 

 
  

    def write(self, command): 
 

        if self.use_uart: 
 

            return self.UART.write(self.pack(command)) 
 

        else: 
 

            print(self.pack(command)) 



   
 

   
 

 

            return True 
 

 
  

    def read_image(self, filename): 
 

        return self.UART.transfer_image(filename) 
 

 
  

     
 

######## QUERIES AND MUTATIONS ################ 
 

    def ping(self): 
 

        return "pong" 
 

        # should send hardware a ping and expect a pong back 
 

        #try: 
 

        #    command = "ping" 
 

        #    response = "pong" 
 

        #    if self.send_command(command): 
 

        #        if self.read_result(response): 
 

        #            return True, [] 
 

        #        else: 
 

        #            return False, ["Payload did not send back sucessful result 

from {}".format(command)] 
 

        #    return False, ["Could not send payload successful 

{}".format(command)] 
 

        # 
 

        #except Exception as e: 
 

        #    return False, [str(e)] 
 

 
  

    def image_capture(self): 
 

        # should send request to capture an image 
 

        try: 
 

            command = "capture_image" 



   
 

   
 

 

            response = config.RETURN_CODE[2] 
 

            if self.send_command(command): 
 

                if self.read_result(response): 
 

                    return True, [] 
 

                else: 
 

                    return False, ["Payload did not send back successful result 

from {}".format(command)] 
 

            return False, ["Could not send payload successful 

{}".format(command)] 
 

 
  

        except Exception as e: 
 

            return False, [str(e)] 
 

 
  

    def image_transfer(self): 
 

        # should send request to start image transfer and then open a stream to 

read image 
 

        try: 
 

            command = "transfer_image" 
 

            response = config.RETURN_CODE[2] 
 

            if self.send_command(command): 
 

                time.sleep(1) 
 

                self.write("START") 
 

                if self.read_image("/home/kubos/images/image.jpg"): 
 

                    if self.read_result(response): 
 

                        return True, [] 
 

                    else: 
 

                        return False, ["Payload did not send back successful 

result from {}".format(command)] 
 

                else: 
 

                    return False, ["Error trying to read image from Payload."] 



   
 

   
 

 

            return False, ["Could not send payload successful 

{}".format(command)] 
 

 
  

        except Exception as e: 
 

            return False, [str(e)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

 

 

 

APPENDIX J  

Cross-Polarized Yagi-Uda Antenna Design - 144MHz Uplink Antenna 

%Based on M2 Antenna Systems, Inc. - 2MCP8A 

%https://www.m2inc.com/FGLEOPACK 

%https://www.m2inc.com/FG2MCP8A 

 

% create a yagiUda object called "yagiAntenna1Horizontal" 

yagiAntenna1Horizontal = yagiUda; 

% create a yagiUda object called "yagiAntenna1Vertical" 

yagiAntenna1Vertical = yagiUda; 

 

% set the exciters of the antennas to a dipoleFolded object 

yagiAntenna1Horizontal.Exciter = dipoleFolded; 

yagiAntenna1Vertical.Exciter = dipoleFolded; 

% set the width of the exciters 

yagiAntenna1Horizontal.Exciter.Width = 

cylinder2strip(convlength(3/16,'in','m')/2); 

yagiAntenna1Vertical.Exciter.Width = 

cylinder2strip(convlength(3/16,'in','m')/2); 

% set the lengths of the exciters (311 mm from the datasheet) 

yagiAntenna1Horizontal.Exciter.Length = convlength(39.063,'in','m'); 

yagiAntenna1Vertical.Exciter.Length = convlength(39.25,'in','m'); 

% set the spacings of the exciters 

%yagiAntenna1XXXX.Exciter.Length/50 

yagiAntenna1Horizontal.Exciter.Spacing = 0.0197; 

yagiAntenna1Vertical.Exciter.Spacing = 0.0198; 

% set the number of directors (13 from the datasheet) 

yagiAntenna1Horizontal.NumDirectors = 2; 

yagiAntenna1Vertical.NumDirectors = 2; 

% set the director lengths (D1 - D13 from the datasheet) 

yagiAntenna1Horizontal.DirectorLength = convlength([37.562, 

36.00],'in','m'); 

yagiAntenna1Vertical.DirectorLength = convlength([37.562, 36.00],'in','m'); 

% set the director spacings (8.375 in from the datasheet) 

horizontalOffset = [13.0, 24.5]; 

verticalOffset = [33.188, 44.688]; 

yagiAntenna1Horizontal.DirectorSpacing = convlength([24.5, 42.5]-

horizontalOffset,'in','m'); 

yagiAntenna1Vertical.DirectorSpacing = convlength([44.688, 62.688]-

verticalOffset,'in','m'); 

% set the reflector lengths (330 mm from the datasheet) 

yagiAntenna1Horizontal.ReflectorLength = convlength(41.250,'in','m'); 

yagiAntenna1Vertical.ReflectorLength = convlength(41.250,'in','m'); 



   
 

   
 

% set the reflector spacings (136.75 mm from the datasheet) 

yagiAntenna1Horizontal.ReflectorSpacing = convlength(13.0-7.0,'in','m'); 

yagiAntenna1Vertical.ReflectorSpacing = convlength(33.188-27.188,'in','m'); 

 

% set the tilt of the first antenna 

yagiAntenna1Horizontal.Tilt = 45; 

% set the tilt axis of the first antenna 

yagiAntenna1Horizontal.TiltAxis = 'Z'; 

% set the tilt of the second antenna 

yagiAntenna1Vertical.Tilt = -45; 

% set the tilt axis of the second antenna 

yagiAntenna1Vertical.TiltAxis = 'Z'; 

 

% create a conformal array to represent the composite antenna 

crossPolYagiAntenna = conformalArray; 

% fill the conformal array with the antennas 

crossPolYagiAntenna.Element = [yagiAntenna1Horizontal yagiAntenna1Vertical]; 

% put the first element at the origin 

crossPolYagiAntenna.ElementPosition(1,:) = [0 0 0]; 

% offset the antenna in the other plane  

crossPolYagiAntenna.ElementPosition(2,:) = [0 0 convlength(27.188-

7.0,'in','m')]; 

% apply a 90 degree phase shift between the two antennas 

crossPolYagiAntenna.PhaseShift = [0 90]; 

 

% show the Cross-Polarized Yagi-Uda antenna 

figure; 

show(crossPolYagiAntenna); 

 

% setup variables for analysis 

frequency = 144e6; 

azimuth_range = 0:1:360; 

elevation_range = -90:1:90; 

% show the antenna radiation pattern at 435 MHz 

figure; 

pattern(crossPolYagiAntenna,frequency,azimuth_range,elevation_range); 

title("GS Yagi Uplink Antenna - 144MHz"); 

 

% azimuth for yagiuda 

figure; 

patternAzimuth(crossPolYagiAntenna, frequency)  

% elevation for yagiuda 

figure; 

patternElevation(crossPolYagiAntenna, frequency) 

 

% output the radiation pattern into variables 

[gain,phi,theta] = 

pattern(crossPolYagiAntenna,frequency,azimuth_range,elevation_range); 

 

% computer the front-to-back-ratio 

d_max = pattern(crossPolYagiAntenna,frequency,0,90); 

d_back = pattern(crossPolYagiAntenna,frequency,0,-90); 

fb_ratio = d_max - d_back 



   
 

   
 

% computer the eplane and hplane beamwidths 

eplane_beamwidth = beamwidth(crossPolYagiAntenna,frequency,0,1:1:360) 

hplane_beamwidth = beamwidth(crossPolYagiAntenna,frequency,90,1:1:360) 

 

saveToSTK('crossPolarizedYagiGS_144MHzUplink_New.txt', phi, theta, gain); 

 

 

Cross-Polarized Yagi-Uda Antenna Design - 437MH DownUplink Antenna 

 

%Based on M2 Antenna Systems, Inc. - 436CP16  

%https://www.m2inc.com/FGLEOPACK 

%https://www.m2inc.com/FG436CP16 

 

% create a yagiUda object called "yagiAntenna1Horizontal" 

yagiAntenna1Horizontal = yagiUda; 

% create a yagiUda object called "yagiAntenna1Vertical" 

yagiAntenna1Vertical = yagiUda; 

 

% set the exciters of the antennas to a dipoleFolded object 

yagiAntenna1Horizontal.Exciter = dipoleFolded; 

yagiAntenna1Vertical.Exciter = dipoleFolded; 

% set the width of the exciters 

yagiAntenna1Horizontal.Exciter.Width = 

cylinder2strip(convlength(3/16,'in','m')/2); 

yagiAntenna1Vertical.Exciter.Width = 

cylinder2strip(convlength(3/16,'in','m')/2); 

% set the lengths of the exciters (311 mm from the datasheet) 

yagiAntenna1Horizontal.Exciter.Length = convlength(13.625,'in','m'); 

yagiAntenna1Vertical.Exciter.Length = convlength(13.625,'in','m'); 

% set the spacings of the exciters 

%yagiAntenna1Horizontal.Exciter.Length/50 

yagiAntenna1Horizontal.Exciter.Spacing = 0.0068;%convlength(1.122,'in','m'); 

yagiAntenna1Vertical.Exciter.Spacing = 0.0068;%convlength(1.122,'in','m'); 

% set the number of directors (13 from the datasheet) 

yagiAntenna1Horizontal.NumDirectors = 6; 

yagiAntenna1Vertical.NumDirectors = 6; 

% set the director lengths (D1 - D13 from the datasheet) 

yagiAntenna1Horizontal.DirectorLength = convlength([12.625, 12.250, 11.937, 

11.750, 11.531, 11.375],'in','m'); 

yagiAntenna1Vertical.DirectorLength = convlength([12.625, 12.250, 11.937, 

11.750, 11.531, 11.375],'in','m'); 

% set the director spacings (8.375 in from the datasheet) 

horizontalOffset = [14.562, 17.0, 23.313, 31.875, 41.813, 51.563]; 

verticalOffset = [21.312, 23.750, 30.063, 38.625, 48.563, 58.313]; 

yagiAntenna1Horizontal.DirectorSpacing = convlength([17.0, 23.313, 31.875, 

41.813, 51.563, 61.000]-horizontalOffset,'in','m'); 

yagiAntenna1Vertical.DirectorSpacing = convlength([23.750, 30.063, 38.625, 

48.563, 58.313, 67.750]-verticalOffset,'in','m'); 

% set the reflector lengths (330 mm from the datasheet) 

yagiAntenna1Horizontal.ReflectorLength = convlength(13.687,'in','m'); 

yagiAntenna1Vertical.ReflectorLength = convlength(13.687,'in','m'); 

% set the reflector spacings (136.75 mm from the datasheet) 



   
 

   
 

yagiAntenna1Horizontal.ReflectorSpacing = convlength(14.562-

12.000,'in','m'); 

yagiAntenna1Vertical.ReflectorSpacing = convlength(21.312-18.750,'in','m'); 

 

% set the tilt of the first antenna 

yagiAntenna1Horizontal.Tilt = 45; 

% set the tilt axis of the first antenna 

yagiAntenna1Horizontal.TiltAxis = 'Z'; 

% set the tilt of the second antenna 

yagiAntenna1Vertical.Tilt = -45; 

% set the tilt axis of the second antenna 

yagiAntenna1Vertical.TiltAxis = 'Z'; 

 

% create a conformal array to represent the composite antenna 

crossPolYagiAntenna = conformalArray; 

% fill the conformal array with the antennas 

crossPolYagiAntenna.Element = [yagiAntenna1Horizontal yagiAntenna1Vertical]; 

% put the first element at the origin 

crossPolYagiAntenna.ElementPosition(1,:) = [0 0 0]; 

% offset the antenna in the other plane 

crossPolYagiAntenna.ElementPosition(2,:) = [0 0 convlength(18.750-

12.0,'in','m')]; 

% apply a 90 degree phase shift between the two antennas 

crossPolYagiAntenna.PhaseShift = [0 90]; 

 

% show the Cross-Polarized Yagi-Uda antenna 

figure; 

show(crossPolYagiAntenna); 

 

% setup variables for analysis 

frequency = 437e6; 

azimuth_range = 0:1:360; 

elevation_range = -90:1:90; 

% show the antenna radiation pattern at 435 MHz 

figure; 

pattern(crossPolYagiAntenna,frequency,azimuth_range,elevation_range); 

 

% azimuth for yagiuda 

figure; 

patternAzimuth(crossPolYagiAntenna, frequency)  

% elevation for yagiuda 

figure; 

patternElevation(crossPolYagiAntenna, frequency) 

 

% output the radiation pattern into variables 

[gain,phi,theta] = 

pattern(crossPolYagiAntenna,frequency,azimuth_range,elevation_range); 

 

% computer the front-to-back-ratio 

d_max = pattern(crossPolYagiAntenna,frequency,0,90); 

d_back = pattern(crossPolYagiAntenna,frequency,0,-90); 

fb_ratio = d_max - d_back 

% computer the eplane and hplane beamwidths 



   
 

   
 

eplane_beamwidth = beamwidth(crossPolYagiAntenna,frequency,0,1:1:360) 

hplane_beamwidth = beamwidth(crossPolYagiAntenna,frequency,90,1:1:360) 

 

saveToSTK('crossPolarizedYagiGS_437MHzDownlink_New.txt', phi, theta, gain); 

 

 

Dipole 144MHz 

%% Antenna Properties  

% Design antenna at frequency 144000000Hz 

antennaObject = design(dipole,144000000); 

% Update load properties  

antennaObject.Load.Impedance = 50; 

azimuth_range = 0:1:360;  

elevation_range = -90:1:90;  

 

%% Antenna Analysis  

% Define plot frequency  

plotFrequency = 144e6; 

% Define frequency range  

freqRange = (129.6:1.44:158.4) * 1e6; 

% show for dipole 

figure; 

show(antennaObject)  

% calculate the beamwidth of the antenna. Antenna beamwidth is the angular 

measure of the antenna pattern coverage.  

% Beamwidth angle is measured in plane containing the direction of main lobe 

of the antenna. 

[bw, angles] = beamwidth(antennaObject,plotFrequency,0,1:1:360) 

 

% pattern for dipole 

figure; 

[gain,phi,theta] = pattern(antennaObject, 

plotFrequency,azimuth_range,elevation_range) 

saveToSTK('Real_SATDipole_144MHz.txt', phi, theta, gain) 

 

% impedance for dipole 

figure; 

impedance(antennaObject, freqRange)  

% s11 for dipole 

figure; 

s = sparameters(antennaObject, freqRange);  

rfplot(s)  

% current for dipole 

figure; 

current(antennaObject, plotFrequency)  

% azimuth for dipole 

figure; 

patternAzimuth(antennaObject, plotFrequency)  

% elevation for dipole 

figure; 

patternElevation(antennaObject, plotFrequency) 

% Right-Hand Circularly Polarized(RHCP) radiation pattern 



   
 

   
 

figure; 

pattern(antennaObject,plotFrequency,'Polarization','RHCP') 

figure; 

pattern(antennaObject,plotFrequency,'Polarization','LHCP') 

 

% calculate and plot the return loss of the helix antenna. Antenna return 

loss is a measure of the  

% effectiveness of power delivery from a transmission line to a load such as 

antenna.  

% The calculations are displayed in logscale. 

impedenceValue = 50.0 

figure; 

returnLoss(antennaObject,freqRange,impedenceValue) 

 

% calculate and plot the VSWR of the helix antenna.  

% The antenna VSWR is another measure of impedance matching between 

transmission line and antenna. 

figure; 

vswr(antennaObject,freqRange,impedenceValue) 

 

Dipole 437MHz 

%% Antenna Properties  

% Design antenna at frequency 437000000Hz 

antennaObject = design(dipole,437000000); 

% Update load properties  

antennaObject.Load.Impedance = 50; 

azimuth_range = 0:1:360;  

elevation_range = -90:1:90;  

 

%% Antenna Analysis  

% Define plot frequency  

plotFrequency = 437000000; 

% Define frequency range  

freqRange = (391.5:4.35:478.5) * 1e6; 

% show for dipole 

figure; 

show(antennaObject)  

% calculate the beamwidth of the antenna. Antenna beamwidth is the angular 

measure of the antenna pattern coverage.  

% Beamwidth angle is measured in plane containing the direction of main lobe 

of the antenna. 

[bw, angles] = beamwidth(antennaObject,plotFrequency,0,1:1:360) 

 

% pattern for dipole 

figure; 

[gain,phi,theta] = pattern(antennaObject, 

plotFrequency,azimuth_range,elevation_range) 

saveToSTK('Real_SATDipole_437MHz_Downlink.txt', phi, theta, gain)  

% impedance for dipole 

 

figure; 

impedance(antennaObject, freqRange)  



   
 

   
 

% s11 for dipole 

figure; 

s = sparameters(antennaObject, freqRange);  

rfplot(s)  

% current for dipole 

figure; 

current(antennaObject, plotFrequency)  

% azimuth for dipole 

figure; 

patternAzimuth(antennaObject, plotFrequency)  

% elevation for dipole 

figure; 

patternElevation(antennaObject, plotFrequency) 

% Right-Hand Circularly Polarized(RHCP) radiation pattern 

figure; 

pattern(antennaObject,plotFrequency,'Polarization','RHCP') 

figure; 

pattern(antennaObject,plotFrequency,'Polarization','LHCP') 

 

% calculate and plot the return loss of the helix antenna. Antenna return 

loss is a measure of the  

% effectiveness of power delivery from a transmission line to a load such as 

antenna.  

% The calculations are displayed in logscale. 

impedenceValue = 50.0 

figure; 

returnLoss(antennaObject,freqRange,impedenceValue) 

 

% calculate and plot the VSWR of the helix antenna.  

% The antenna VSWR is another measure of impedance matching between 

transmission line and antenna. 

figure; 

vswr(antennaObject,freqRange,impedenceValue) 

MATLAB to STK Radiation Pattern Conversion 

%Writing to STK Antenna File 

% open a new file for writing 

function y = saveToSTK(fileName, phi, theta, gain) 

    output_file = fopen(fileName,'w'); 

    % write the external antenna pattern file header 

    fprintf(output_file, 'stk.v.11.1.0\n'); 

    fprintf(output_file, 'PhiThetaPattern\n'); 

    fprintf(output_file, 'AngleUnit Degrees\n'); 

    fprintf(output_file, 'NumberOfPoints 65341\n'); 

    fprintf(output_file, 'PatternData\n'); 

     

    % loop through the azimuth, elevation, and gain values and write to file 

    for i = 1:1:361 

        k = 181; 

        for j = 1:1:181 

            if i == 361 && j == 181 



   
 

   
 

                fprintf(output_file, '%f\t%f\t%f', phi(i),  

(theta(k) + 90), gain(j,i)); 

            else 

                fprintf(output_file, '%f\t%f\t%f\n', phi(i),  

(theta(k) + 90), gain(j,i)); 

            end 

        k = k - 1; 

        end 

    end 

    % close the file 

    fclose(output_file); 

    disp('done saving') 

end 

 

APPENDIX K 

[Justin] 

The radio transceivers aboard the satellite are equipped with 50 Ω ports for the RF (antenna) 

receive/input and transmit/output, in the form of an unbalanced coaxial transmission line.  But a 

Dipole antenna normally exhibits approximately 72 Ω as its natural impedance.  Connecting 

the satellite transceivers directly to such an antenna would cause a signal reflection at the 

point of the impedance mismatch, sending some of the signal power backwards along the 

transmission line to its source, instead of efficiently delivering it to the destination. 

The formula for calculating the reflection coefficient is: 

Γ = √[(R-Z0)2 + j2] / √[(R+Z0)2 + j2] 

…where: 

• Γ is the reflection coefficient 

• R is the Real part of the load impedance 

• j is the Imaginary part of the load impedance 

• Z0 is the source impedance. 

 

From the reflection coefficient, the Voltage Standing Wave Ratio can be calculated as follows. 

VSWR = (1 + Γ) / (1 – Γ) 

 

Ideally, a VSWR = 1 would represent a perfect coupling.  To get close to this, an impedance 

matching circuit must be inserted in the antenna feedlines. 



   
 

   
 

But because the Dipole antennas are balanced, and the transcievers send and receive 

balanced signals, a device known as a balun (portmanteau of “BALanced” = “UNbalanced”) 

must be inserted in the feedlines. 

In a Dipole antenna, the radial opposite of the “main” radial acts as the counterpoise – carrying 

a displacement current equal and opposite to the main radial.  (Hence the term “balanced”.)  

Everything else should, ideally, be electromagnetically neutral to the antenna. 

In a (single-core) coaxial transmission line, only the displacement current along the core is 

considered the active signal; technically the shield does carry the current, but the signal is 

always measured or processed relative to this, so it is effectively neutral.  And with most radio 

transceivers, the RF shield is common to the chassis and Earth Ground (or “Spacecraft 

Ground”, in this case). 

If a Dipole was to be connected directly to the coaxial feedlines, the entire satellite chassis 

(“Spacecraft Ground”) would effectively become the counterpoise, and the antenna radial 

connected to the feedline core would act more like a Monopole.  Clearly not the desired 

operation! 

The balun contains an autotransformer to “electromagnetically isolate” the counterpoise of the 

balanced antenna from the unbalanced feedline shield (and spacecraft chassis, in this case), 

while also bringing the impedance to a closer match – 75 Ω.  But the balun needs to pass the 

constraints and criteria imposed by the application (cubesat spacecraft, in this case), and a 

compatible balun should be selected with return loss figures as low as possible (ideally). 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

Appendix L  

Gyro Demo [19] [20] 

arduino_ide/calibrated_orientation/calibrated_orientation.ino 

// Full orientation 

sensing using 

NXP/Madgwick/Mahony 

and a range of 9-

DoF  

// sensor sets.  

// You *must* perform a magnetic calibration before this code will work.  

//  

// To view this data, use the Arduino Serial Monitor to watch the  

// scrolling angles, or run the OrientationVisualiser example in Processing.  

// Based on  https://github.com/PaulStoffregen/NXPMotionSense with 

adjustments  

// to Adafruit Unified Sensor interface  

   

#include <Adafruit_Sensor_Calibration.h>  

#include <Adafruit_AHRS.h>  

   

Adafruit_Sensor *accelerometer, *gyroscope, *magnetometer;  

   

// uncomment one combo 9-DoF!  

//#include "LSM6DS_LIS3MDL.h"  // can adjust to LSM6DS33, LSM6DS3U, 

LSM6DSOX...  

//#include "LSM9DS.h"           // LSM9DS1 or LSM9DS0  

#include "NXP_FXOS_FXAS.h"  // NXP 9-DoF breakout  

   

// pick your filter! slower == better quality output  

//Adafruit_NXPSensorFusion filter; // slowest  

//Adafruit_Madgwick filter;  // faster than NXP  

Adafruit_Mahony filter;  // fastest/smalleset  

   

#if defined(ADAFRUIT_SENSOR_CALIBRATION_USE_EEPROM)  

  Adafruit_Sensor_Calibration_EEPROM cal;  

#else  

  Adafruit_Sensor_Calibration_SDFat cal;  

#endif  

   

#define FILTER_UPDATE_RATE_HZ 100  

#define PRINT_EVERY_N_UPDATES 10 



   
 

   
 

 

//#define AHRS_DEBUG_OUTPUT  

   

uint32_t timestamp;  

   

void setup() {  

  Serial.begin(9600);  

  while (!Serial) yield();  

   

  if (!cal.begin()) {  

    Serial.println("Failed to initialize calibration helper");  

  } else if (! cal.loadCalibration()) {  

    Serial.println("No calibration loaded/found");  

  }  

   

  if (!init_sensors()) {  

    Serial.println("Failed to find sensors");  

    while (1) delay(10);  

  }  

    

  accelerometer->printSensorDetails();  

  gyroscope->printSensorDetails();  

  magnetometer->printSensorDetails();  

   

  setup_sensors();  

  filter.begin(FILTER_UPDATE_RATE_HZ);  

  timestamp = millis();  

   

  Wire.setClock(400000); // 400KHz  

}  

   

   

void loop() {  

  float roll, pitch, heading;  

  float gx, gy, gz;  

  static uint8_t counter = 0;  

   

  if ((millis() - timestamp) < (1000 / FILTER_UPDATE_RATE_HZ)) {  

    return;  

  }  

  timestamp = millis();  

  // Read the motion sensors  

  sensors_event_t accel, gyro, mag;  

  accelerometer->getEvent(&accel);  

  gyroscope->getEvent(&gyro); 



   
 

   
 

 

  magnetometer->getEvent(&mag);  

#if defined(AHRS_DEBUG_OUTPUT)  

  Serial.print("I2C took "); Serial.print(millis()-timestamp); 

Serial.println(" ms");  

#endif  

   

  cal.calibrate(mag);  

  cal.calibrate(accel);  

  cal.calibrate(gyro);  

  // Gyroscope needs to be converted from Rad/s to Degree/s  

  // the rest are not unit-important  

  gx = gyro.gyro.x * SENSORS_RADS_TO_DPS;  

  gy = gyro.gyro.y * SENSORS_RADS_TO_DPS;  

  gz = gyro.gyro.z * SENSORS_RADS_TO_DPS;  

   

  // Update the SensorFusion filter  

  filter.update(gx, gy, gz,   

                accel.acceleration.x, accel.acceleration.y, 

accel.acceleration.z,   

                mag.magnetic.x, mag.magnetic.y, mag.magnetic.z);  

#if defined(AHRS_DEBUG_OUTPUT)  

  Serial.print("Update took "); Serial.print(millis()-timestamp); 

Serial.println(" ms");  

#endif  

   

  // only print the calculated output once in a while  

  if (counter++ <= PRINT_EVERY_N_UPDATES) {  

    return;  

  }  

  // reset the counter  

  counter = 0;  

   

#if defined(AHRS_DEBUG_OUTPUT)  

  Serial.print("Raw: ");  

  Serial.print(accel.acceleration.x, 4); Serial.print(", ");  

  Serial.print(accel.acceleration.y, 4); Serial.print(", ");  

  Serial.print(accel.acceleration.z, 4); Serial.print(", ");  

  Serial.print(gx, 4); Serial.print(", ");  

  Serial.print(gy, 4); Serial.print(", ");  

  Serial.print(gz, 4); Serial.print(", ");  

  Serial.print(mag.magnetic.x, 4); Serial.print(", ");  

  Serial.print(mag.magnetic.y, 4); Serial.print(", ");  

  Serial.print(mag.magnetic.z, 4); Serial.println("");  

#endif 



   
 

   
 

 

   

  // print the heading, pitch and roll  

  roll = filter.getRoll();  

  pitch = filter.getPitch();  

  heading = filter.getYaw();  

  Serial.print("Orientation: ");  

  Serial.print(heading);  

  Serial.print(" ");  

  Serial.print(pitch);  

  Serial.print(" ");  

  Serial.println(roll);  

   

  float qw, qx, qy, qz;  

  filter.getQuaternion(&qw, &qx, &qy, &qz);  

  Serial.print("Quaternion: ");  

  Serial.print(qw, 4);  

  Serial.print(", ");  

  Serial.print(qx, 4);  

  Serial.print(", ");  

  Serial.print(qy, 4);  

  Serial.print(", ");  

  Serial.println(qz, 4);    

    

#if defined(AHRS_DEBUG_OUTPUT)  

  Serial.print("Took "); Serial.print(millis()-timestamp); Serial.println(" 

ms");  

#endif  

} 

 

arduino_ide/Adafruit_AHRS/processing/bunnyrotate_ahrs_fusion_usb/bunny_ahrs_fusion_usb

.pde 

import 

processing.serial.*;  

import java.awt.datatransfer.*;  

import java.awt.Toolkit;  

import processing.opengl.*;  

import saito.objloader.*;  

import g4p_controls.*;  

   

float roll  = 0.0F;  

float pitch = 0.0F; 



   
 

   
 

 

float yaw   = 0.0F;  

float temp  = 0.0F;  

float alt   = 0.0F;  

   

OBJModel model;  

   

// Serial port state.  

Serial       port;  

String       buffer = "";  

final String serialConfigFile = "serialconfig.txt";  

boolean      printSerial = false;  

   

// UI controls.  

GPanel    configPanel;  

GDropList serialList;  

GLabel    serialLabel;  

GCheckbox printSerialCheckbox;  

   

void setup()  

{  

  size(400, 500, OPENGL);  

  frameRate(30);  

  model = new OBJModel(this);  

  model.load("cubesat4.obj");  

  model.scale(20);  

    

  // Serial port setup.  

  // Grab list of serial ports and choose one that was persisted earlier or 

default to the first port.  

  int selectedPort = 0;  

  String[] availablePorts = Serial.list();  

  if (availablePorts == null) {  

    println("ERROR: No serial ports available!");  

    exit();  

  }  

  String[] serialConfig = loadStrings(serialConfigFile);  

  if (serialConfig != null && serialConfig.length > 0) {  

    String savedPort = serialConfig[0];  

    // Check if saved port is in available ports.  

    for (int i = 0; i < availablePorts.length; ++i) {  

      if (availablePorts[i].equals(savedPort)) {  

        selectedPort = i;  

      }   

    } 



   
 

   
 

 

  }  

  // Build serial config UI.  

  configPanel = new GPanel(this, 10, 10, width-20, 90, "Configuration 

(click to hide/show)");  

  serialLabel = new GLabel(this,  0, 20, 80, 25, "Serial port:");  

  configPanel.addControl(serialLabel);  

  serialList = new GDropList(this, 90, 20, 200, 200, 6);  

  serialList.setItems(availablePorts, selectedPort);  

  configPanel.addControl(serialList);  

  printSerialCheckbox = new GCheckbox(this, 5, 50, 200, 20, "Print serial 

data");  

  printSerialCheckbox.setSelected(printSerial);  

  configPanel.addControl(printSerialCheckbox);  

  // Set serial port.  

  setSerialPort(serialList.getSelectedText());  

}  

   

void draw()  

{  

  background(0,0, 0);  

   

  // Set a new co-ordinate space  

  pushMatrix();  

   

  // Simple 3 point lighting for dramatic effect.  

  // Slightly red light in upper right, slightly blue light in upper left, 

and white light from behind.  

  pointLight(255, 200, 200,  400, 400,  500);  

  pointLight(200, 200, 255, -400, 400,  500);  

  pointLight(255, 255, 255,    0,   0, -500);  

    

  // Displace objects from 0,0  

  translate(200, 350, 0);  

    

  // Rotate shapes around the X/Y/Z axis (values in radians, 0..Pi*2)  

  rotateX(radians(roll));  

  rotateZ(radians((-1)*pitch));  

  rotateY(radians(yaw));  

   

  pushMatrix();  

  noStroke();  

  model.draw();  

  popMatrix();  

  popMatrix(); 



   
 

   
 

 

  //print("draw");  

}  

   

void serialEvent(Serial p)   

{  

  String incoming = p.readString();  

  //print ("incoming: " + incoming);  

    

  if (printSerial) {  

    println(incoming);  

  }  

    

  if ((incoming.length() > 8))  

  {  

    String[] list = split(incoming, " ");  

    //print (list[0]);  

    if ( (list.length > 0) && (list[0].equals("Orientation:")) )   

    {  

      // print ("\n roll: " + roll + " pitch: " + pitch + " yaw: " + yaw);  

      roll  = float(list[3]);  

      pitch = float(list[2]);  

      yaw   = float(list[1]);  

      print ("\n roll: " + roll + " pitch: " + pitch + " yaw: " + yaw);  

      buffer = incoming;  

    }  

    if ( (list.length > 0) && (list[2].equals("Alt:")) )   

    {  

      alt  = float(list[3]);  

      buffer = incoming;  

    }  

    if ( (list.length > 0) && (list[2].equals("Temp:")) )   

    {  

      temp  = float(list[3]);  

      buffer = incoming;  

    }  

  }  

}  

   

// Set serial port to desired value.  

void setSerialPort(String portName) {  

  // Close the port if it's currently open.  

  if (port != null) {  

    port.stop();  

  } 



   
 

   
 

 

  try {  

    // Open port.  

    port = new Serial(this, portName, 9600);  

    port.bufferUntil('\n');  

    // Persist port in configuration.  

    saveStrings(serialConfigFile, new String[] { portName });  

  }  

  catch (RuntimeException ex) {  

    // Swallow error if port can't be opened, keep port closed.  

    port = null;   

  }  

}  

   

// UI event handlers  

   

void handlePanelEvents(GPanel panel, GEvent event) {  

  // Panel events, do nothing.  

}  

   

void handleDropListEvents(GDropList list, GEvent event) {   

  // Drop list events, check if new serial port is selected.  

  if (list == serialList) {  

    setSerialPort(serialList.getSelectedText());   

  }  

}  

   

void handleToggleControlEvents(GToggleControl checkbox, GEvent event) {   

  // Checkbox toggle events, check if print events is toggled.  

  if (checkbox == printSerialCheckbox) {  

    printSerial = printSerialCheckbox.isSelected();   

  }  

} 

 

APPENDIX M - Goals 

Radio Frequency Communication Link Budget 

[Pierre] February   

A link budget was completed to prepare for STK orbital analysis. This includes the 
satellite's transceiver power and losses as well as ground station transceiver power and 
losses. Antenna parameters are also included. Final uplink and downlink budgets will be 
used for initial STK orbital analysis. This will determine if the satellite has good enough 



   
 

   
 

communication with the groundstation based on antenna configuration as well as 
properties of the transceivers. 

ADCS Controller  

[Adam] February 

• Stm32 f401re board has been decided to be used for the ADCS subsystem 

• Board has been proven to be space operative so long as operation is under a year 

• There is no cpu lock stepping as processor is single core ARM Cortex-M4  

• Workstation has been configured to allow the board to be used with the Arduino IDE 
which rapidly speeds up development since there are many adafruit libraries that can be 
used for sensors and motor control 

• Adafruit 9Dof sensor includes magnetometer, gyroscope, and accelerometer has now 
been configured to interface with the f401re through i2c 

• roll, pitch, and yaw can be read from the 9Dof and mapped to an Obj file for a real time 
display of the sensor's orientation and this will be used when an Obj file of the satellite is 
made 

• Watchdog time has been tested on the f401re 
 

TO DO: 

• Soft error handling on the f401re (ie. bit flipping) 
• configure daughter board that will sit on top of the f401re to control motors 
• access low hardware configurations of f401re while using arduino ide (i.e. control bits to 

make gpio port SDA) 
 
Payload-OBC Communications  

[Jon] February 

• initial software application has been written and installed on the payload module 
(raspberry pi) 

• the OBC (beaglebone board) can now ping the payload module for successful 
connection, request an immediate capture, and then transfer the image from the 
payload module to the OBC storage 

• however, the image transfer is quite slow over serial UART, so currently investigating 
other options for the image data transfer between the payload and OBC 

• SPI was going to be used for the image data transfer, but unfortunately it was 
discovered that linux does not have driver support to act as an SPI or I2C slave, only 
SPI and I2C masters. The payload module and OBC are both running versions of 
linux and SPI connection can only happen between an SPI master and SPI slave. As a 
result I2C and SPI communication will not work. 

• this interface may also be used for loading new software versions from the OBC to 
payload module so this also will be taken into consideration when selecting another 
interface. 

TODO: 



   
 

   
 

• research, select and test new, faster interface for image data transfer between the 
payload module and OBC. 

• starting setup RF connection with OBC and simulated ground station (arduino) to be 
able to be achieve full image capture on payload module and full image transfer to OBC 
and then to ground station over RF. 

 

Payload-CDH Update  

[Jon] April 

• due to the recent circumstances of COVID-19, the project scope has changed a bit 
related to payload and the CDH development. 

• Payload will mostly continue as normal, with simulations being done using STK. 
Payload software will be developed and testing on a RPi Zero with a pi camera as the 
image sensor. 

• CDH software development will continue with KubOS Linux on the beaglebone black, 
once the board is ordered and received (the team has lost access to the lab and all of 
the components there so the minimum amount of components will be ordered for at 
home development and testing). The flight software will be simulated on the BBB as 
much as possible, without attaching any the ADCS, EPS, or RF hardware as these 
components are unavailable. These will be simply simulated in the software, returning 
fake or mock telemetry. The goal is to be able to interface the BBB (CDH) and the 
RPi Zero (Payload) for commanding image captures and performing image transfers. 

• Note: from the previous update, we were having issues with the interface between the 
payload module and the OBC. Since both are running Linux, no master-slave protocol 
could be used so we reverted to using UART. UART is alright for sending small 
amounts of data, but image transfers were taking way too long. The KubOS Linux team 
has now added support for the USB interface on the BBB. Once the BBB has been 
received, we are hoping that the BBB will act as the USB host and the RPi zero as the 
USB device to perform faster image transfers from the payload to the OBC. 

TODO: 

• CDH software development and testing 
• Payload software development and testing 
• Image sensor integration 
• Payload (RPi Zero) and CDH (BBB) integration 

 

RF Antenna Deployment System and Ground Station  

[Pierre] April 

Revised Plan: 

Due to the capstone project being limited to working from home, the antenna 
deployment system will not be constructed. However, we were previously able to get 
licensing from Dr. Rashidzadeh for EM Pro and will simulate our RF PCB design for the 
antenna release mechanism, signal conversion and power. In addition, more attention 



   
 

   
 

will directed towards the ground station design. This will include basic configuration and 
possibly simulating these parameters in EM Pro.  
 

CDH Update – ADCS subsystem  

[Adam] April 

Due to the impact of COVID-19, the ADCS system will no longer be done with space 
grade systems. 
Instead a flat sat will be made using off the shelf, hobbyist boards. 

TO DO: 

 
Instead of the STM32 F401RE board, the ADCS system will be an Arduino UNO at its 
core and a Raspberry Pi 2 will be used as the OBC. 
The main thing that will be implemented with the Arduino board is multitasking, low 
power modes, I2C communication to the Pi and to hobby sensors, and any other 
embedded system standards (ie. error handling, memory dump on crash). 

 

Payload/CDH Update  
[Jon] July 

Command and Data Handling Updates: 

• CDH team has been working to finalize initial prototype of flight software to run on the 
main Onboard Computer as well as working on the the software and integration with the 
ADCS submodule. 

• Satellite has been setup at home as a "flat-sat" where all space-flight components have 
been replaced with COTS parts for testing and proof of design, layed out flat. This is to 
simulate as best as possible the actual satellite for software testing. 

• The flight software now includes nominal operation procedures, error handling, 
hardware communications with all other subsystems (EPS, ADCS, Payload, and RF).  

• All testing has been done with COTS components to prove software functionality, 
although not the exact same with actual space-flight components. Further integration 
and testing would need to be done once actual components for flight model have been 
received. 

• Simple, software radio functionality has been implemented and tested to where no the 
user can send the satellite various commands over RF (turn things on/off, operate 
subsystems, downlink images/telemetry, etc..). The more control and more commands 
we have to the satellite from the ground station, the safer and more reliable the mission 
will be. 

TODO: 

• finish as much of software development/testing of other additional features/functionality 
of the satellite. 



   
 

   
 

• look into ground station software for monitoring passes and automated data downlink. 
 
 
Payload Updates: 

• Payload team has been working through simulations, software design of payload 
module that is responsible for taking images, doing any necessary filtering, processing, 
encryption, and preparing them for downlink. 

• Work has been done to verify both satellite mission objectives: single, pointed image 
acquisition and image coverage acquisition. 

• The team has also been developing a simple web app that will receive images from the 
ground station when downlinked from the satellite and automatically overlay them over a 
global map for viewing by users. This will allow for viewing of satellite coverage of 
certain areas.  

TODO: 

• Finalize simulations, calculations, and other software to prepare for final report and 
presentation.  

 

Radio Frequency Update  
[Pierre] July 

ADS and EMPro Simulations: 
 

• The radio frequency division has been working on simulating the balun circuit that will 
be used to convert the balanced/unbalanced signal for receiving data from the ground 
station and for down linking data to the ground station.  

• ADS (from keysight technologies) has been used to modify an existing example of 
a balun circuit. The final designs have been exported to EMPro for better simulation 
results including graphs and 3D imagery. 

• ADS and EMPro provide VSWR, E-field radiation, reflection coefficient and power 
characteristics that help to design the traces on the PCB for optimal signal preservation. 
Comparisons have been made between configurations. 

• The simulations also consider different dielectric materials for the substrate of the 
traces. Previously space tested PCB designs have been used as primary examples for 
their choices of materials, thickness, etc. Provided with the opportunity, the final design 
would have been built and tested with the antennas. 

• All testing configurations consider the satellite's size restrictions as this design 
constraint is the reason for simulating different orientations and curvatures for the PCB 
traces. 

TO DO: 

• Test as many types of trace curvatures to minimize signal reflection. 
• Provide a method of observing performance with a disturbance signal to determine 

noise pollution 
• Research possible ground station setups 

 



   
 

   
 

CDH - ADCS Controller Update  

[Adam] July 

• Hardware abstraction for STM32 F446RE was created and board was brought up using 

STM32CubeIDE 

TO DO: 

• Configure and test ADCS controller as I2C slave and I2C master 


	Abstract
	Table of Contents
	1 Introduction
	1.1 Payload
	1.2 CDH
	1.3 Radio

	2 Benchmarking
	2.1 Software Frameworks
	2.2 Hardware Protection
	2.3 Radio Frequency

	3 Design Criteria, Constraints, and Deliverables
	3.1 Orbit
	3.2 Payload
	3.3 Command and Data
	3.4 Radio
	3.5 Deliverables

	4 Design Methodology
	4.1 Payload
	4.1.1 Payload and Secondary Payload Sensor
	4.1.2 Primary Payload Lens Selection
	4.1.3 Secondary Payload Lens Selection
	4.1.4 Payload Operation

	4.2 CDH
	4.2.1 Software Framework – KubOS Linux
	4.2.1.1 KubOS Linux
	4.2.1.2 KubOS Services
	4.2.1.3 Mission Applications
	4.2.1.4 Boot Loader

	4.2.2 Software Architecture
	4.2.2.1 Services
	4.2.2.2 Applications

	4.2.3 Software Operation
	4.2.3.1 Deployment Task
	4.2.3.2 Initialization Task
	4.2.3.3 Nominal Task
	4.2.3.4 Logging
	4.2.3.5 Log Levels
	4.2.3.6 Log Rotation

	4.2.4 ADCS Controller
	4.2.4.1 Hardware Abstraction
	4.2.4.2 I2C Driver
	4.2.4.3 GPIO Driver

	4.2.5 Hardware

	4.3 Radio

	5 Physical Implementation/Simulation Development
	5.1 Payload
	5.1.1 Primary Payload Access Statistics
	5.1.2 Secondary Payload – US Case Study

	5.2 CDH
	5.2.1 ADCS

	5.3 Radio

	6 Experimental Methods/Model Validation
	6.1 Software Integration Testing
	6.2 Ground Station Operator and Satellite Image Viewing
	6.3 Radio Antenna Deployment

	7 Design Specifications and Evaluation Matrix
	7.1 CDH
	7.2 Radio

	8 Budget
	9 Conclusions
	10 References
	11 Appendices

